Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn

Trong bài báo này, chúng tôi thiết lập và chứng minh tính siêu ổn định của phương trình hàm

tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn. Đồng thời, sử dụng kết quả đạt được,

chúng tôi suy ra một số kết quả đã có và một số trường hợp đặc biệt của lớp phương trình hàm tuyến

tính suy rộng nhiều biến.

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 1

Trang 1

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 2

Trang 2

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 3

Trang 3

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 4

Trang 4

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 5

Trang 5

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 6

Trang 6

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 7

Trang 7

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 8

Trang 8

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn trang 9

Trang 9

pdf 9 trang xuanhieu 920
Bạn đang xem tài liệu "Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn

Thiết lập tính siêu ổn định của phương trình hàm tuyến tính suy rộng nhiều biến trong không gian tựa chuẩn
l a , 1
 xL [0,1] is quasi-normed space with  2 p . 
 1. ||x || 0 if and only if x 0. p
34 
 Dong Thap University Journal of Science, Vol. 9, No. 5, 2020, 33-41 
 The following corollary is used to study the for all xU . 
hyperstability of generalized linear equations in 2. For every xU , if there exists a 
several variables in quasi-Banach spaces. positive real M such that 
 Corollary 1.4 (Dung and Hang, 2018, * (x ) () M ( n )( x )  (1.8) 
Corollary 2.2). Suppose that n 0
 1. U is a nonempty set, (Y ,||.||, ) is a then the fixed point of satisfying (1.7) 
quasi-Banach space, and :YYUU is a is unique. 
given function, Y U is the set of all mappings The following result is well-known and is 
from U to Y. usually called Aoki-Rolewicz theorem. 
 Theorem 1.5 (Maligranda, 2008, Theorem 
 2. There exist f1,,: fk U U and 
 1). Let (X ,||.||, ) be a quasi-normed space, 
LLU,,: such that for all , Y U 
 1 k p log 2 and |||.|||: X defined by 
and xU , 2 
 1
 nnp
 || (xx ) ( ) || p
 |||x ||| inf   || xi || : x x i : x i X , n 1
 ii 11
 k 
  Li( x ) ||()() f i ( x ) f i ( x ) ||. (1.2) for all xX . Then |||.||| is p -norm on X 
 i 1
 and 
 3. There exist  :U and :UY 1
 ||xxx || ||| ||| || ||, for all xX . 
such that for all xU , 2
 || ()x ()|| x  (). x (1.3) 2. Main results 
 In this section, we establish and prove 
 4. For every xU and  log 2, 
 2 some results on the hyperstability of the 
 generalized linear equations in several 
 * n 
 ():()()xx   (1.4) variables (1.1) in quasi-normed spaces. 
 n 0
 Theorem 2.1. Suppose that 
where  : UU defined by 
 1. , denote the fields of real or 
 k
 complex numbers and (X ,||.||XX , ) is a 
  ():()()x Lii x() f x (1.5) 
 i 1 quasi-normed space over field , (Y ,||.||YY , ) 
 is a quasi-Banach space over field and 
for all  :U and xU . 
 f: X Y is a given mapping. 
 Then we have, 2. n 2 and m are positive integers, 
 1. For every xU , the limit C 0, aij and Li are given 
 parameters for im 1, , , jn 1, , . 
 limn  (xx ) ( ) (1.6) 
 n 
 3. There exist im0 {1, , } and 
exists and the so difined function  :UY is j j {1,  , n } such that a 0, a 0. 
 12 ij01 ij02
a fixed point of satisfying 
 For all ii 0 ,  0, there is jn {1, , } 
  *
 ||() x  ()|| x 4  () x (1.7) satisfying aa  . 
 ij i0 j
 35 
Natural Sciences issue 
 4. There exists p 0 such that For a given large t , (kjj t b ) 0 and 
 m n n x 0, we set xj () k j t b j x , jn 1, , , and 
 p
 Li f  a ij x j C || x j || X (2.1) n
 i 1 j 1 j 1 write s()() t a k t b , im 1, , . Then 
 Y i ij j j
 j 1
 n n n
for all x1, , xn X \{0}. 
 st1( )  aktb 1j ( j j )  akt 1 j j  ab 1 j j 1 
 Then we have j 1 j 1 j 1
 and the inequality (2.1) takes the form 
 mn 
 L f a x 0 (2.2) mn
 i ij j pp
 ij 11 Li f() s i() t x C| k j t b j | || x || X .(2.3) 
 ij 11Y
for all x, , x X \{0}. 
 1 n From (2.3), we gain 
Proof. Without any loss of generality, we may 
 mn
assume that i 1 and ()a is the row pp
 0 11jn Lfx1 ( )  Lfstxi() i ( ) C | ktb j j | || x || X .
satisfying Condition (3). For im 1, , , let ij 21Y
 i Dividing the two sides of the above inequality 
 n
 n
denote the hyperplane atij j 0 in . For by | L1 |, we obtain 
 j 1
 m
kn 1, , , let ck, be the coordinate plane 
 Li
 1.f ( x ) f() si ( t ) x 
t 0 in . Then is the hyperplane i 2 L
k 1 1 Y
 n
 n
at1 jj 0. By the hypothesis on ()a11jn , it C pp
j 1 |kj t b j | || x || X , 
 || L1 j 1
follows that 1 i (im  2, , ) and 
 L C
 1, ck. So, we get set L : 1, L : i and C :. Then 
 1 i L || L
 nm 1 1
 1,\\ c k i . we can use (2.1) as the form 
 ki 12
 mn
Choose an element pp (2.4) 
 Lfstxi() i() fx( ) C | ktb j j | || x || X .
 nm ij 21Y
 (,,).kk1 n(\)\ 1 c , k i 
 ki 12 Since kk1, ,n 0 we have limkjj t b , 
 t 
Obviously, (,,)kk1  n satisfies n
 p
 for all jn 1, , . Define t: C | k j t b j | , 
 n 
 j 1
 ak 0
  1 jj so that 
 j 1
 lim t 0. (2.5) 
 kj 0, j 1,  , n t 
 n We can suppose that t is sufficiently large so 
 a k 0, i 2,  , m .
  ij j that 0 1. 
 j 1 t
 XX\{0} \{0}
 Define mapping TYYt : by 
 Keep the hypothesis on ()a11jn in mind, 
 n m
there exists bb,, such that ab 1. 
 1 n  1 jj Tt()() x  L i() s i t x 
 j 1 i 2
36 
 Dong Thap University Journal of Science, Vol. 9, No. 5, 2020, 33-41 
 X \{0} n
for all xX \{0} and  Y . We set m
 n m 2 p p (2.8) 
  t t(x )  Y | L i |.| s i ( t ) | t || x || X .
 p i 2
  t(xx ) t || || X (2.6) 
 Indeed, if n 0 , then (2.8) holds by (2.6). 
for all xX \{0}. The inequality (2.4) can be Suppose that (2.8) holds for nk , that is, 
 k
written as m
  k(x )  m 2 | L |.| s ( t ) | p || x || p . 
 ||T f () x f ()|| x (). x t t Y i i t X
 t Y t i 2
This proves that (1.3) is satisfied. We have 
 XX\{0} \{0}
 k 1
 Define mapping  t : by 
 tt ()x 
 m
  (x ) m 2 | L |  s ( t ) x (2.7) k
 t Y i() i t()  t t ()x 
 i 2
 k
 X \{0} mm
 m 22 m p p
for all xX \{0} and  . This proves 
 Y|L i |  Y | L i |.| s i ( t ) | t || s i ( t ) x || X
 ii 22 
that (2.7) has the form as (1.5), where Li is 
 mmk
replaced by  m 2 |L |. Furthermore, for all m 22 p m p p
 Yi Y|L i |.| s i ( t ) | .  Y | L i |.| s i ( t ) | t || x || X
 ii 22 
, Y X \{0} , xX \{0} and Remark 1.2 (3), 
 m k 1
we have m 2 p p
  Y|L i |.| s i ( t ) | t || x || X . 
 i 2
 ||Tt ( x ) T t ( x ) || Y 
 So, (2.8) holds for all n . 
 mm
 L s()() t x L s t x By using (2.8) with  log 2, we gain 
 i()() i i i 2Y
 ii 22Y *
 t ()x 
 m 
 ()()n  x
 [Li ( s i()() t x ) L i ( s i t x )]  tt
 i 2 Y n 0
 n
 m
 m  m 2 |L |.| s ( t ) | p || x || p . (2.9) 
 m 2 |L |.||  s ( t ) x  s ( t ) x || .  Y i i t X
 Y i()() i i Y ni 02 
 i 2
 n n n
It proves that (1.2) is satisfied when is sti()()  aktb ijj j  akt ijj  ab ijj and 
 j 1 j 1 j 1
replaced by n
 akij j 0 for all im 2, , , we have 
For all xX \{0} we have j 1
 nn
 tt ()x 
 lim |si ( t ) | lim a ij k j t a ij b j . 
 m tt 
 jj 11
  mp 2 |L |. || s ( t ) x ||
 Y i t i X m
 i 2 mp 2
 So, we gain limY |L i |.| s i ( t ) | 0. We 
 m t 
 m 2 p p i 2
  Y|L i |.| s i ( t ) | t || x || X . 
 i 2 choose a large positive integer t such that 
 m
By induction, we will show that for all mp 2
 Y|L i |.| s i ( t ) | 1. (2.10) 
xX \{0}, n i 2
 Then 
 37 
Natural Sciences issue 
 n
 m mn 
  mp 2 |L |.| s ( t ) | l
  Y i i LTi t f a ij x j
 ni 02 ij 11
 Y
 1 mnl
  (2.11) m 2 p p
 m   |L |.| s ( t ) | C || x || . 
 mp 2 Yii j X
 1 Y |L i |.| s i ( t ) | i 21j
 i 2
 We have 
 mn
 By using (2.9) and (2.11), we have l 1
 LTi t f() a ij x j 
 p ij 11
 Y
 * tX||x ||
 t ()x 
 m  mm n
 l
 mp 2 L L T f() s() t a x 
 1 Y |L i |.| s i ( t ) | i  k t k  ij j
 i 1 k 2 j 1
 i 2 Y
 m m n
for all xX \{0}. This proves that (1.4) l
 Lk  LT i t f()  a ij s k() t x j 
 k 2 i 1 j 1
is satisfied. Y
 According to Corollary 1.4, with a large m m n
  m 2 |L | LTl f a s ( t ) x 
positive integer t , there exists a fixed point Y k  i t()  ij k j
 k 2 i 1 j 1
 Y
 ft : X Y of Tt f t()() x f t x satisfying 
 m ml n
  m 22 m p p
 ||ftY ( x ) f ( x ) || Y|L k | Y  | L i |.| s i ( t ) |  C || s k ( t ) x j || X
 ki 2 2j 1
 *
 4 (x ) l
 t mm 
 m 22|L |.| s ()| t p . m ||.|()| L s t p
 4  ||x || p Y k k Y i i 
 tX (2.12) ki 22 
 m  n
 mp 2 p
 1 Y |L i |.| s i ( t ) | .Cx||jX || 
 i 2 j 1
 mnl 1
for all xX \{0}. Furthermore, by (1.6) m 2 p p
 Y|L i |.| s i ( t ) | C || x j || X . 
we obtain ij 21
 n
 ftt( x ) lim T f ( x ). (2.13) 
 n So, (2.14) holds for all r . 
 By using (2.10), we gain 
By induction, we will show that for all 
 mnr
xX \{0}, r m 2 p p
 limY |L i |.| s i ( t ) | C || x j || X 0. (2.15) 
 r 
 ij 21
 mn 
 r From (2.13), (2.14), (2.15), Remark 1.2 (2) and 
 LTi t f a ij x j
 ij 11 Theorem 1.5, we obtain 
 Y
 mn
 mnr 
 m 2 p p
 Li f t a ij x j 
 Y|L i |.| s i ( t ) | C || x j || X . (2.14) 
  ij 11
 ij 21 Y
 mn
Indeed, if r 0 , then (2.14) holds by (2.1). r 1 
 lim LTi t f a ij x j 
Suppose that (2.14) holds for rl , that is, r 
 ij 11
 Y
38 
 Dong Thap University Journal of Science, Vol. 9, No. 5, 2020, 33-41 
 mn 2. n 2 and m are positive integers, 
 r 1 
 lim LTi t f a ij x j C 0, a and L are given 
 r  ij i
 ij 11 
 Y parameters for im 1, , , jn 1, , . 
 mn
 r 1 
 3. There exist im0 {1, , } and 
 lim LTi t f a ij x j 
 r 
 ij 11 j j {1,  , n } such that a 0, a 0. 
 Y 12 ij01 ij02
 mnr
 m 2 p p For all ii 0 ,  0, there is jn {1, , } 
 lim Y |L i |.| s i ( t ) | C || x j || X 
 r  satisfying aa  . 
 ij 21 ij i0 j
 0. 
 4. There exists pp,, such that 
It means that 1 n
 mn pp1 n 0 and 
 Li f t a ij x j 0. (2.16) 
  mn n
 ij 11 p j
 Li f a ij x j C|| x j || X 
 ij 11 j 1
So, ft satisfies (2.2) with a large positive Y
integer t . Letting t in (2.12) and using 
 for all x, , x X \{0}. 
(2.5), we gain 1 n
  Then we have 
 lim ||ftY ( x ) f ( x ) || 
 t mn 
 p L f a x 0 
 4 tX ||x || i ij j
 lim  ij 11 
 t m
 1  mp 2 |L |.| s ( t ) |
 Y i i for all x, , x X \{0}. 
 i 2 1 n
 0. n
 p j
 Proof. Set t:| C k j t b j | . Then 
It follows that lim ||ftY ( x ) f ( x ) || 0. So j 1
 t 
 n
 limft ( x ) f ( x ). (2.17) 
 t lim t 0 since p j 0. The proof of 
 t 
 j 1
Letting t in (2.16) and using (2.17), we Theorem 2.2 is now the same as the that of 
 mn Theorem 2.1. 
gain Li f a ij x j 0 for all 
 ij 11 We apply the established result to prove 
 some results of Zhang (2015). 
x1, , xn X \{0}. So, f satisfies (2.2). 
 Corollary 2.3 (Zhang, 2015, Theorem 
 We continue to present an extension of 
 1.6). Suppose that 
(Zhang, 2015, Theorem 1.7) from normed 
spaces to quasi-normed spaces. 1. denote the fields of real or 
 Theorem 2.2. Suppose that complex numbers and (X ,||.||X ) is a normed 
 space over field , (Y ,||.|| ) is a Banach 
 1. , denote the fields of real or Y
complex numbers and (X ,||.|| , ) is a space over field and f: X Y is a 
 XX given mapping. 
quasi-normed space over field , (Y ,||.||YY , ) 
is a quasi-Banach space over field and 2. and are positive integers, 
f: X Y is a given mapping. and are given 
 parameters for 
 39 
Natural Sciences issue 
 3. There exist im0 {1, , } and gain AAi  1. Furthermore, f satisfies (2.1) 
j j {1,  , n } such that a 0, a 0. 
 12 ij01 ij02 for all x, y X \{0}, L1 1, LA2 and 
For all ii 0 ,  0, there is jn {1, , } 
 LB3 . So all assumptions of Theorem 2.1 
satisfying aa  . 
 ij i0 j are satisfied. Then Proposition 2.4 follows from 
 4. There exists p 0 such that Theorem 2.1. 
 m n n
 p Proposition 2.5. Let denote the fields of 
 Li f  a ij x j C || x j || X 
 i 1 j 1 j 1 real or complex numbers, is a 
 Y
 quasi-normed space over field 
for all x1, , xn X \{0}. is a quasi-Banach space ab, \{0}, 
 Then and let satisfy 
 mn n
 n i i
 ( 1)C f ( ix y ) n ! f ( x ) 
 Li f a ij x j 0  n
 ij 11 i 1 Y
 pp
 for all x1, , xn X \{0}. c(|| x ||XX || y || ) 
Proof. The normed spaces are the quasi- for all Then satisfies the equation 
normed spaces when  1. So, all n
 ( 1)n iC i f ( ix y ) n ! f ( x ) 0 
assumptions of Theorem 2.1 are satisfied. Then  n
 i 1
Corollary 2.3 follows from Theorem 2.1. 
 for all x, y X \{0}. 
 We continue to apply established results 
to some special cases. The next is an extension Proof. We set A1 : (1;1), Aii : ( ,1) for all 
of the result of Zhang (2015) from the 
 in {2, , } and An 1 : (1,0). For all 
normed spaces to the quasi-normed spaces. 
 i {2,n 1} and  , we gain AAi  1. 
Proposition 2.4. Let , denote the fields of Furthermore, f satisfies (2.1) for all 
 n 0
real or complex numbers, (X ,||.||XX , ) is a 
 x, y X \{0} and LLL12,,, n are ( 1) Cn , 
quasi-normed space over field , (Y ,||.||YY , ) n 11
 (  1)Cn , ,1, respectively, and Lnn 1 !. 
is a quasi-Banach space , ab, \{0}, So all assumptions of Theorem 2.1 are 
AB,, c 0, p 0 and let f: X Y satisfy satisfied. Then Proposition 2.5 follows from 
 Theorem 2.1. 
 ||f ( ax by ) Af ( x ) Bf ( y ) ||Y 
 Proposition 2.6. Let denote the fields of 
 c(|| x ||pp || y || ) 
 XX real or complex numbers, is a 
for all x, y X \{0}. Then f satisfies the equation quasi-normed space over field 
 f( ax by ) Af ( x ) Bf ( y ) 0 is a quasi-Banach space 
 and let satisfy 
for all x, y X \{0}. 
 ||f ( x y ) f ( y z ) f ( x z ) 
Proof. We set A1 : ( a , b ), A2 : (1,0) and 
 f( x ) f ( y ) f ( z ) f ( x y z ) ||Y
A3 : (0,1). For all i {2,3} and  , we p p p
 c(|| x ||XXX || y || || z || ) 
40 
 Dong Thap University Journal of Science, Vol. 9, No. 5, 2020, 33-41 
for all x, y , z X \{0}. Then f satisfies N. V. Dung and V. T. L. Hang. (2018). The 
the equation generalized hyperstability of general 
 f()()() x y f y z f x z linear equations in quasi-Banach spaces. 
 J. Math. Anal. Appl., 462(1), 131-147. 
 f()()()() x f y f z f x y z 
 D. H. Hyers. (1941). On the stability of the 
 for all x, y , z X \{0}. linear functional equation. Proc. Natl. 
 Acad. Sci. USA. (27), 222-224. 
Proof. We set A : (1,1,0), A : (0,1,1), 
 1 2 N. Kalton. (2003). Quasi-Banach spaces. In: 
A3 : (1,0,1), A4 : (1,0,0), A5 : (0,1,0), W.B. Johnson, and J. Lindenstrauss 
 (Eds.). Handbook of the Geometry of 
A6 : (0,0,1) and A7 : (1,1,1). For all 
 Banach Spaces. Elsevier, Amsterdam. (2), 
i {2,3,4,5,6,7} and  , we gain AA  . 
 i 1 1099-1130. 
Furthermore, f satisfies (2.1) for all 
 N. J. Kalton, N. T. Peck, and J. W. Roberts. 
x, y , z X \{0} and LLL 1, 
 1 2 3 (1984). An F-space sampler. London 
LLLL4 5 6 7 1. So all assumptions of mathematical society lecture note series, 
Theorem 2.1 are satisfied. Then Proposition Cambridge University Press. (89), 15-32. 
2.6 follows from Theorem 2.1. L. Maligranda. (2008). Tosio Aoki (1910-
 Acknowledgments: This article is 1989). In International symposium on 
supported by Dong Thap University with Banach and Function Spaces II. 
Topics Student scientific research code Yokohama Publishers, Yokohama. 1-23. 
SPD2019.02.13./. G. Maksa and Z. Pales. (2001). Hyperstability 
 References of a class of linear functional equations, 
D. G. Bourgi. (1949). Approximately isometric Acta Math. Acad. Paedagog. Nyhazi. 
 and multiplicative transformations on (NS). (17), 107-112. 
 continuous function rings, Duke Math J., S. M. Ulam. (1964). Problems in Modern 
 (16), 385-397. Mathematics. Wiley, New York. 
J. Brzdek, J. Chudziak, and Z. Piles. (2011). A D. Zhang. (2015). On hyperstability of 
 fixed point approach to stability of generalised linear equation in several 
 functional equations. Nonlinear Anal., variables. Bull. Aust. Math. Soc., (92), 
 (74), 6728-6732. 259-267. 
 41 

File đính kèm:

  • pdfthiet_lap_tinh_sieu_on_dinh_cua_phuong_trinh_ham_tuyen_tinh.pdf