Ontology-based sentiment analysis for brand crisis detection on online social media

ABSTRACT

Social media is emerging as a popular channel for online marketing. Nowadays, there more and

more brands those are using social media to track and care for their brand health. Especially, social

media is a source and also an important channel for brands to take care of their brands. On social

media, things can move quickly due to viral information spread among the audience. Thus, a robust and automatic method for detecting crisis and even stop the crisis before it starts is urgently

demanded.This paper discusses detection of brand crisis on online social media, i.e. when a brand

is being suffered from unexpectedly high frequency of negative comments on online channels

such as social networks, electronic news, blog and forum. In order to do so, we combined the usage of probabilistic model for burst detection with ontology-based aspect-level sentiment analysis

technique to detect negative mention. The burst on online environment is a trendy topic that is

rapidly growing recently, whereas the sentiment analysis process helps to identify the opinion of

the audience regarding the brands. By combining domain knowledge captured in the ontology,

we can make the analysis process focused on certain domains when needed. Also, the ontological

concepts can also improve the accuracy of sentiment analysis at the aspect level.To evaluate the

performance of our approach, we collect real data from online social media channels in Vietnam,

which are provided by YouNet Media, a professional online data analysis company. Our experimental results show that the aspect-level sentiment analysis technique is extremely useful for detecting

of negative mentions that related with the products and brands. Based on the achieved results,

commercial products and platforms can be seriously considered

Ontology-based sentiment analysis for brand crisis detection on online social media trang 1

Trang 1

Ontology-based sentiment analysis for brand crisis detection on online social media trang 2

Trang 2

Ontology-based sentiment analysis for brand crisis detection on online social media trang 3

Trang 3

Ontology-based sentiment analysis for brand crisis detection on online social media trang 4

Trang 4

Ontology-based sentiment analysis for brand crisis detection on online social media trang 5

Trang 5

Ontology-based sentiment analysis for brand crisis detection on online social media trang 6

Trang 6

Ontology-based sentiment analysis for brand crisis detection on online social media trang 7

Trang 7

Ontology-based sentiment analysis for brand crisis detection on online social media trang 8

Trang 8

Ontology-based sentiment analysis for brand crisis detection on online social media trang 9

Trang 9

Ontology-based sentiment analysis for brand crisis detection on online social media trang 10

Trang 10

pdf 10 trang xuanhieu 2320
Bạn đang xem tài liệu "Ontology-based sentiment analysis for brand crisis detection on online social media", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Ontology-based sentiment analysis for brand crisis detection on online social media

Ontology-based sentiment analysis for brand crisis detection on online social media
phrases cap-
 Term”} tured by this rules
 RN = {} #sent_parts: the parts of the phrase expressing the
 RT = {subconcept-of(“Positive Term”, “Sentiment sentiment
 Term”), subconcept-of(“Negative Term”, “Sentiment #core_part: The part expresses the main sentiment
 Term”)} trend in phrases.
 S
 R = {mentioned-by(“Thing”, “Sentiment Term”)} #core_word: used when we have multiple words in
 instances-of(“Positive Term”) = {”like”} core parts
 instances-of(“Negative Term”) = {”hate”} #neg: Flag to indicate that it is a negative phrase or
 Generally, GO includes one element of the definition not.
 of Thing, the examples of which may be any real-life Example 3. Let us consider the following rule:
 idea. For example, Thing can be mentioned or im-
 Example_Sentiment_Rule_1
 plied by an Emotion Term, which may be either Pos-
 #pattern: (\S+/N\s+)+(\S+/V\s+)+(\S+/A\s*)+
 itive Term or Negative Term. In this case, GO does not
 #sent_parts: [V,A]
 pose any example of term element, non-taxonomic
 #core_part: V
 or sentimental relationship; while two words “like”
 and “hate” are examples of positive term and negative #neg: 0
 term in sentimental definitions. The #pattern of the rule is described by a regular ex-
 We focus on the notion of T-Box and A-Box to repre- pression (RE), conforming to the RE convention spec-
 sent the ontology graphically. Practically, the T-Box ified at  Roughly speaking, one
 describes the interaction of the concepts and the A- can read this rule as follows: “This rule applies for the
 Box explains the occurrences of the definitions. Fig- sentence matching the following pattern: There is a
 ure 3 indicates the T-Box and A-Box of Generic On- noun N in the sentence, then a verb V after N, and
 tology GO. then an adverb A after V.”;
 We also develop two separate sentimental connec- The #sent_parts specify that only V and A are neces-
 tions for sentiment ontology in Figure 4, referred to sary to infer the sentiment (meaning N would bear no
 SI43
Science & Technology Development Journal – Engineering and Technology, 3(SI1):SI40-SI49
 Figure 3: An example of Generic Ontology 11
 sentiment opinion in this case; and #core_part speci- Experimental Result
 fies that the main sentiment of this phrase can be in- After that, we assessed the precision of our approach
 ferred by V (A will only be taken into account if we to sentiment analysis. We contrasted the performance
 are unsure about the sentiment implication of V). of the different sentiment analysis techniques as fol-
 EXPERIMENTAL RESULTS lows.
 Smartphone Knowledge Base • SEN-FULL: We have submitted our full struc-
 ture.
 To perform tests with the actual information, we have
 • SEN-NO-ONT: In the system, we did not use
 acquired from YouNet Media (YNM), an organization
 Aspect-oriented Sentiment Ontology.
 devoted to social listening and business research, ac-
 • SEN-NO-RULES: In the system, we did not use
 tual customer analysis datasets on mobile products.
 Sentiment Phrasing Rules.
 Databases include 2809, 3098, and 365 negative, neu-
 • SVM: SVM was used for sentiment grouping,
 tral, and positive references, overall, to 6 smartphone
 as this strategy was used by numerous related
 items. All in all, 1,782 positive terms and 1,469 neg-
 works.
 ative terms are identified for the Smartphone realm.
 13
 As a result, we have built a Mobile Ontology frame- • Delta tf.idf metrics’ new findings were also
 work modeled by the Protégé framework, as shown in used to achieve the optimum efficiency of the
 SVM technique.
 Figure 6.
 Figure 8 indicates the percentage of precision
 Crisis Alert System
 when implementing these research techniques to
 A crisis alert system is then developed by our method, the datasets obtained. We can find that in classic
 as illustrated in Figure 7. The information is orga- smartphones such as Nokia 220 or Philips E160, the
 nized a ”spike chart”. Each ”spike” shows a discussion precision performance of SEN-FULL and SEN-NO-
 phase. In the last spike due to the increasing amount ONT was more or less the same, as these versions
 of negative information is becoming higher, the sys- are very old so their characteristics are not captured
 tem then changes the color of this spike to the lime for in the ontology. However, in other items where the
 alerting. related product characteristics have been adequately
 SI44
Science & Technology Development Journal – Engineering and Technology, 3(SI1):SI40-SI49
 Figure 4: An example of Industry Ontology 11
 described in ontology, SEN-FULL has outperformed Our sentiment analysis output is measured following
 all other methods. the identification of non-neutral comparisons (i.e.,
 It is noteworthy that SVM could contend with SEN- negative and positive situations) from datasets. Un-
 NO-ONT in goods where neutral evidence was pre- doubtedly, the collection of sentimental terms (both
 dominant, e.g. It’s Huawei or LG Stylus. It can be positive and negative) plays a key part in this mission.
 clarified that the incidence level of sentiment phrases If we do not use any emotion term, we will not be able
 in neutral data was not high, so SVM could show to distinguish any non-neutral situations. However, if
 its ability to identify insignificant samples (i.e. to we use the entire range of emotion terms, we can find
 identify samples without sentiment views). Never- the maximum number of non-neutral instances. It
 theless, once emotional phrases get huge, SVM has also raises the risk of false-positive confirmation (i.e.
 obtained low output due to the difficulty of language neutral reference is labeled as positive or negative).
 constructs, which might contradict the sense of senti- Thus, in this test, we differ the scale of the term ofsen-
 ment. This aspect was mirrored in the fact that SEN- timent collection from blank to maximum size. After
 NO-RULES and SVM have essentially reached the that, we measure the output of the sentiment analy-
 same efficiency in all datasets. sis at each change point. The findings are indicated
 SI45
Science & Technology Development Journal – Engineering and Technology, 3(SI1):SI40-SI49
 Figure 5: An example of sentiment analysis on conceptual graph
 Figure 6: The Smartphone Ontology developed by Protégé
 SI46
Science & Technology Development Journal – Engineering and Technology, 3(SI1):SI40-SI49
 Figure 7: Spike chart show potential crisis
 Figure 8: Accuracy performance of sentiment analysis strategies
 Figure 9: Accuracy performance of sentiment analysis approaches
 SI47
Science & Technology Development Journal – Engineering and Technology, 3(SI1):SI40-SI49
 by the respective ROC curves as shown in Figure 9. AUTHOR CONTRIBUTION
 As stated, sentiment analysis methods included in our
 Associate Professor Quan Thanh Tho conceived of
 studies produce surprisingly great results as the areas
 the presented idea, developed the theory and carried
 covered by their ROC curves are significantly greater
 out the experiment. In addition. Associate Professor
 than the value of 0.5 (i.e. the area affected by a ran-
 Quan Thanh Tho wrote the manuscript with support
 dom classification). CSS FULL usually does higher
 from Mr Mai Duc Trung.
 than the majority of the three other ways.
 REFERENCES
 DISCUSSION 1. Middleton SE, Middleton L, Modafferi S. Real-time crisis map-
 ping of natural disasters using social media. IEEE Intelligent
 Brand crisis detection has been an emerging issue Systems. 2014;29(2):9–17. Available from: https://doi.org/10.
 nowadays with the advancement of social media. 1109/MIS.2013.126.
 However, how to define a “crisis” formally, in order 2. Yin J, Cameron MA, Power R, Robinson B. Emergency situation
 awareness from twitter for crisis management. In Proceedings
 to be processed automatically in computing systems of the 21st International Conference on World Wide Web ACM.
 remains a challenging system. In this paper, this prob- 2012;p. 695–698. PMID: 22774929. Available from: https://doi.
 lem is addressed by a mathematical model of buzz, org/10.1145/2187980.2188183.
 3. Zhao Z, Resnick P, Mei Q. Enquiring minds: Early detection of
 combined with the capability of knowledge represen- rumors in social media from enquiry posts. In Proceedings of
 tation by ontology. The performance of this proposal the 24th International Conference on World Wide Web ACM
 . 2015;p. 1395–1405. Available from: https://doi.org/10.1145/
 has been experimented, but its impact on real data still 2736277.2741637.
 needs to be further explored. 4. Maynard D, Gossen G, Funk A, Fisichella M. Should I care about
 your opinion? Detection of opinion interestingness and dy-
 CONCLUSION namics in social media. Future Internet. 2014;6(3):457–481.
 Available from: https://doi.org/10.3390/fi6030457.
 In this article, we address the tracking of brand cri- 5. Kleinberg J. Bursty and hierarchical structure in streams. Data
 sis by integrating burst identification strategies and Mining and Knowledge Discovery. 2003;7(4):373–397. Avail-
 able from: https://doi.org/10.1023/A:1024940629314.
 ontological sentiment analysis. Then, we propose a 6. Zhang X. Fast algorithms for burst detection (Doctoral disser-
 general framework for this purpose. Under this sys- tation, Courant Institute of Mathematical Sciences New York).
 tem, domain ontologies, described as Aspect-oriented 2006;.
 7. Parikh N, Sundaresan N. Scalable and near real-time burst de-
 Sentiment Ontology, are paired with unique linguistic tection from eCommerce queries. In Proceedings of the 14th
 guidelines, described as Sentiment Phrasing Rules, to ACM SIGKDD international conference on Knowledge discov-
 ery and data mining ACM . 2008;p. 972–980. Available from:
 effectively facilitate sentiment ratings in online refer- https://doi.org/10.1145/1401890.1402006.
 ences. Our studies on actual databases from real me- 8. Koike D, Takahashi Y, Utsuro T, Yoshioka M, Kando N. Time Se-
 dia networks have obtained positive results. ries Topic Modeling and Bursty Topic Detection of Correlated
 News and Twitter. In IJCNLP. 2013;917(921).
 9. Liu B. Sentiment Analysis and Opinion Mining. Morgan & Clay-
 LIST OF ABBREVIATION USED pool Publishers. 2012;.
 ICT: Information and communication technology 10. Padmaja S, Fatima S. Opinion Mining and Sentiment Anal-
 ysis - An Assessment of Peoples’ Belief: A Survey. Inter-
 CG: Conceptual Graph national Journal of Ad hoc, Sensor & Ubiquitous Comput-
 RE: Regular Expression ing. 2013;4(1):21–33. Available from: https://doi.org/10.5121/
 HMM: Hidden Markov Model ijasuc.2013.4102.
 11. Le TT, Vo TH, Mai DT, Quan TT, Phan TT. Sentiment Analysis
 YNM: YouNet Media Using Anaphoric Coreference Resolution and Ontology Infer-
 SVM: Suport Vector Machine ence. In International Workshop on Multi-Disciplinary Trends
 in Artificial Intelligence Springer, Cham. 2016;p. 297–303.
 NLP: Natural Language Processing Available from: https://doi.org/10.1007/978-3-319-49397-8_
 26.
 CONFLICT OF INTEREST 12. Quan TT, Hui SC. Ontology-based natural query retrieval using
 conceptual graphs. In Pacific Rim International Conference
 The authors hereby guarantee that there is no conflict on Artificial Intelligence Springer Berlin Heidelberg. 2008;p.
 of interest in the publication of the article. 309–320. Available from: https://doi.org/10.1007/978-3-540-
 89197-0_30.
 13. Martineau J, Finin T. Delta TFIDF: An Improved Feature Space
 for Sentiment Analysis. ICWSM. 2009;9:106.
 SI48
Tạp chí Phát triển Khoa học và Công nghệ – Kĩ thuật và Công nghệ, 3(SI1):SI40-SI49
 Open Access Full Text Article Bài Nghiên cứu
Phân tích cảm xúc dựa trên bản thể học cho việc phát hiện khủng
hoảng thương hiệu trên truyền thông mạng xã hội trực tuyến
Quản Thành Thơ, Mai Đức Trung*
 TÓM TẮT
 Phương tiện truyền thông mạng xã hội đang nổi lên như một kênh phổ biến cho việc tiếp thị trực
 tuyến. Ngày nay, ngày càng có nhiều thương hiệu đang sử dụng phương tiện truyền thông mạng
 Use your smartphone to scan this xã hội để theo dõi và quan tâm đến thương hiệu của họ. Đặc biệt, mạng xã hội là một nguồn và
 QR code and download this article cũng là một kênh quan trọng để các thương hiệu quan chú ý tới thương hiệu của họ. Trên mạng
 xã hội, mọi thứ có thể làn truyền nhanh chóng do thông tin phát tán giữa nhung người sử dụng.
 Do đó, một phương pháp mạnh mẽ và tự động để phát hiện khủng hoảng và thậm chí ngăn chặn
 khủng hoảng trước khi nó bắt đầu xảy ra. Bài báo cáo này thảo luận về việc phát hiện khủng hoảng
 thương hiệu trên phương tiện truyền thông mạng xã hội trực tuyến, nghĩa là khi một thương hiệu
 đang bị tần suất bình luận tiêu cực cao đột biến trên các kênh trực tuyến như mạng xã hội, tin tức
 điện tử, blog và diễn đàn. Để thực hiện việc này, chúng tôi đã kết hợp việc sử dụng mô hình xác
 suất để phát hiện sự bùng nổ (burst) với kỹ thuật phân tích cảm xúc ở mức khía cạnh dựa trên bản
 thể học (ontology) để phát hiện các đề cập tiêu cực. Sự bùng nổ trên môi trường trực tuyến là
 một chủ đề hợp thời đang phát triển nhanh chóng gần đây, trong đó quá trình phân tích cảm xúc
 giúp xác định ý kiến của người dùng liên quan đến các thương hiệu. Bằng cách kết hợp miền kiến
 thức (domain knowledge) được thu thập trong bản thể học (ontology), chúng ta có thể làm cho
 quá trình phân tích tập trung vào một số miền nhất định khi cần. Ngoài ra, các khái niệm bản thể
 học (ontological concepts) cũng cải thiện tính chính xác của phân tích cảm xúc mức khía cạnh. Để
 đánh giá hiệu quả của phương pháp của chúng tôi, chúng tôi thu thập dữ liệu thực từ các kênh
 truyền thông mạng xã hội trực tuyến tại Việt Nam, được cung cấp bởi công ty YouNet Media, một
 công ty chuyên phân tích dữ liệu trực tuyến. Kết quả thực nghiệm của chúng tôi cho thấy kỹ thuật
 phân tích cảm xúc mức khía cạnh cực kỳ hữu ích để phát hiện các đề cập tiêu cực liên quan đến
 các sản phẩm và thương hiệu. Dựa trên kết quả đạt được, các sản phẩm và nền tảng thương mại
 có thể được xem xét nghiêm túc.
 Từ khoá: Phát hiện khủng hoảng trực tuyến, Phát hiện bùng nổ, Bản thể học cảm xúc hướng khía
 Khoa Khoa học và Kỹ thuật Máy tính, cạnh, phân tích cảm xúc
 Trường Đại học Bách khoa,
 ĐHQG-HCM
 Liên hệ
 Mai Đức Trung, Khoa Khoa học và Kỹ thuật
 Máy tính, Trường Đại học Bách khoa,
 ĐHQG-HCM
 Email: mdtrung@hcmut.edu.vn
 Lịch sử
 • Ngày nhận: 28-7-2019
 • Ngày chấp nhận: 29-8-2019 
 • Ngày đăng: 27-10-2020
 DOI :10.32508/stdjet.v3iSI1.515 
 Bản quyền
 © ĐHQG Tp.HCM. Đây là bài báo công bố
 mở được phát hành theo các điều khoản của
 the Creative Commons Attribution 4.0
 International license.
 Trích dẫn bài báo này: Thơ Q T, Trung M D. Phân tích cảm xúc dựa trên bản thể học cho việc phát hiện 
 khủng hoảng thương hiệu trên truyền thông mạng xã hội trực tuyến. Sci. Tech. Dev. J. - Eng. Tech.; 
 3(SI1):SI40-SI49.
 SI49

File đính kèm:

  • pdfontology_based_sentiment_analysis_for_brand_crisis_detection.pdf