Giáo trình Toán Chuyên đề (Bản đẹp)

1.1. Chuẩn bị

1.1.1. Tích Đề-các

+ Định nghĩa 1.1 Cho họ gồm n tập {4}}-( n là số nguyên dương). Tích Đề-các của họ đã cho là một tập, ký hiệu là A x A2 A 3 An, mỗi phần tử của nó là một bộ có thứ tự gồm n thành phần (a1, a2,., an), trong đó đi € Ai Với i=1,2,.,n.

Ví dụ 1.1 Cho A = {a, b, c}, A2 = {1,2} khi đó:

A x A2 = {(a,1); (, 2); (6,1); (1, 2); (c,1); (c, 2)}

Az x A2 = {(1, a); (2.a); (1,b); (2,6); (1,c); (2.c)} Vậy A A A + A x A. Chú ý: Nếu A = A = = A, = A, thay cho ký hiệu A x A, X X A, ta dùng ký hiệu A”. •Ví dụ 1.2 R" = {(11.12.In), I; ER, i = 1,2,.,n}.

1.1.2. Ánh xạ

+ Định nghĩa 1.2 Cho hai tập khác rỗng X,Y. Một ánh xạ f từ X vào Y là một quy tắc cho phép với mỗi phần tử z + X xác định duy nhất một phần tử y = f(x) + Y, ký hiệu: f: X +Y hoặc g= f(z). Trong định nghĩa trên

•X được gọi là tập nguồn của ánh xạ f •y được gọi là tập đích của ánh xạ • y = f(z) gọi là ảnh của qua ánh xạ f, I gọi là tạo ảnh của y = f(z). • Giả sử Ac X, khi đó f(A) = {f(z) :IE A)} gọi là ảnh của A qua ánh xạ . • Giả sử BcY, Khi đó - (B) = {x : y = f(x) + B)} gọi là nghịch ảnh của B bởi f

+ Định nghĩa 1.3 Cho f: X =Y là một ánh xạ

1. f là đơn ánh nếu 1, 2 & 3 và thứ 2 thì f(x)= f(x)

 

Giáo trình Toán Chuyên đề (Bản đẹp) trang 1

Trang 1

Giáo trình Toán Chuyên đề (Bản đẹp) trang 2

Trang 2

Giáo trình Toán Chuyên đề (Bản đẹp) trang 3

Trang 3

Giáo trình Toán Chuyên đề (Bản đẹp) trang 4

Trang 4

Giáo trình Toán Chuyên đề (Bản đẹp) trang 5

Trang 5

Giáo trình Toán Chuyên đề (Bản đẹp) trang 6

Trang 6

Giáo trình Toán Chuyên đề (Bản đẹp) trang 7

Trang 7

Giáo trình Toán Chuyên đề (Bản đẹp) trang 8

Trang 8

Giáo trình Toán Chuyên đề (Bản đẹp) trang 9

Trang 9

Giáo trình Toán Chuyên đề (Bản đẹp) trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 156 trang xuanhieu 4060
Bạn đang xem 10 trang mẫu của tài liệu "Giáo trình Toán Chuyên đề (Bản đẹp)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

File đính kèm:

  • pdfgiao_trinh_toan_chuyen_de_ban_dep.pdf