Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan

Nội dung bài báo đề xuất một cấu trúc anten đa tái cấu hình: vừa có thể tái cấu hình theo giản đồ

bức xạ vừa có thể tái cấu hình theo tần số dựa trên các trạng thái bật – tắt khác nhau của bốn diode

PIN. Để làm được điều này, thiết kế anten được biến đổi theo hình vuông Padovan với 9 phần tử

trên mặt bức xạ và bốn phần tử trên mặt phẳng đất. Anten thu được có thể tái cấu hình theo giản

đồ bức xạ tại hai phương +520 và 270, tái cấu hình theo tần số từ 5Ghz đến 18.74GHz với kích

thước tổng thể khá nhỏ, đạt 44.44 x 35 x 1.52 mm3. Bên cạnh đó, các tham số quan trọng khác của

anten tái cấu hình như hiệu suất và băng thông thu được khá tốt ở phần lớn các tần số cộng hưởng

của anten.

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 1

Trang 1

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 2

Trang 2

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 3

Trang 3

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 4

Trang 4

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 5

Trang 5

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 6

Trang 6

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 7

Trang 7

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 8

Trang 8

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan trang 9

Trang 9

pdf 9 trang xuanhieu 2900
Bạn đang xem tài liệu "Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan

Anten tái cấu hình theo giản đồ bức xạ và tần số sử dụng chuỗi padovan
ble radiation patterns among all 
 Số 25 9 
TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
(ISSN: 1859 - 4557) 
multiple frequency bands, productive follows. In Part 2, the antenna design is 
utilization of electromagnetic range, and presented. The simulated and analysis are 
frequency discernment, decreasing the co- studied in Part 3. Finally, Part 4 concludes 
channel interference and jamming [1]. the study. 
Only in 2018-2019, a score of researches 
about reconfigurable antennas have been 2. ANTENNA DESIGN 
reported with different variations such 2.1. Padovan sequence 
as frequency reconfigurable [2]-[7], 
 Unlike Fibonacci – golden ratio on the 2D 
radiation pattern reconfigurable [8-15]. In 
 dimension, the Padovan sequence that is a 
[9], a wideband antenna was reconfigured 
 golden ratio on the 3D dimensions is set 
radiation pattern by G. Jin et al. The 
 through a cubic function. The Padovan 
antenna uses four diodes to change to four 
different directions but the average sequence is defined by basic number 
performance approximately 60%. Also, value: 1, 1, 1, 2, 2, 3, 4, 5, 7, 9,  which 
the antenna size is rather big, which is is formed by formula (1). 
 3
75×75×0.75 mm , so it hard to apply to P(n)=P(n-2)+P(n 3) (1) 
the user equipment. Scale problem is a 
challenge of the antenna in [11] because 
of numerous layers that significantly 
create large elevation. In [14], a design 
antenna with a ring structure can 
change radiation patterns by matching 
impedance, but performance only reaches 
50%. 
In this paper, a frequency and radiation 
pattern reconfigurable antenna using four 
PIN diodes is presented. The proposed 
antenna operates with four states of Fig. 1. Padovan sequence variation 
frequency reconfiguration and two states Like Fibonacci’s spiral, the Padovan 
of radiation pattern one. Besides, using sequence varies to become Padovan’s 
the variable squares based on the Padovan spiral that is shown in (2). 
sequence, the antenna achieves a striking 푃(푛)
 lim ( ) = 휌 (2) 
compact size. Thus, it can be easily 푛→∞ 푃(푛−1)
integrated into modern compact devices where the real value of 휌 is built through 
while still being able to work with a cubic formula (3). 
multiple technologies. 
 3 3
 √9+ 69 √9− 69
 휌 = √ + √ ~ 1.324717957 (3) 
The rest of this paper is organized as 18 18
10 Số 25 
 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
 (ISSN: 1859 - 4557) 
2.2. Antenna structure Table 1. Parameters and their dimensions (mm) 
2.2.1. Antenna using Padovan Parameter Value Parameter Value 
sequence W 35 P2 4 
 44.44 6 
Figure 2 shows the proposed antenna's L P3 
 Ld 5.16 P4 8 
geometrical structure that consists of three 
 Wd 0.2 P5 10 
parts: the radiation patch, the substrate, 
 k 2 P7 14 
and the ground plane. The substrate layer 
 P1 2 
is RO4350B with hs= 1.52 mm and 
ԑ=3.48, loss tangent 0.0037. The patch is 
constructed by the Padovan geometric 
sequence in the form of nine squares. 
These squares are arranged in ascending 
order in a counter-clockwise direction 
starting from 180° direction with 
incremental size 1, 1, 1, 2, 2, 3, 4, 5, 7. 
The ratio k = 2 is built according to the 
following formula (4) and (5). (a) (b) 
 Fig. 2. Antenna geometric. (a): Frontside; 
 푃(푛) = 푃(푛 − 2) + 푃(푛 − 3) (4) (b): Backside 
 푃( ) = 푃(푛) × (5) 2.2.2. PIN diode 
 To switch the different antenna states, 
where P(n) is the value from the Padovan four PIN MA4AGBLP912 diodes are 
sequence, P(N) is the real value of the used due to low loss and high switching 
radiation patch. speed. The PIN diode can be turned on 
 and off by using suitable polarity voltage. 
It is the same rule for the ground plane 
 The ON state is made by a resistor in 
with the form of four DGS squares. The 
 series with the inductor and the OFF state 
antenna is connected by coaxial cable is made by a resistor connected in parallel 
through the ground plane to be exposed to with the capacitor then in series with the 
the radiation patch. The position of inductor. The values R, L, C of the diode 
coordinates (x,y) is (-3.5;6.5). Four diodes PIN under both ON and OFF conditions 
are connected to the feeding network are shown in Table 2. 
by a microstrip line of 5.166 mm long The different states of the antenna are 
and 0.2 mm width. The other antenna shown in Table 3. Using four PIN diodes 
dimensions are detailed in Table 1. for the four radiating elements, the 
Số 25 11 
TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
(ISSN: 1859 - 4557) 
antenna can resonate at the respective S11 parameter in different states of 
frequencies while maintaining the same the switch using the PIN diode 
direction of the radiation plot. Besides, at corresponding to the 2D radiation 
a defined resonant frequency, the antenna patterns. Part 3.1 presents the frequencies 
will also have different radiation of the reconfigured band while keeping 
directions based on the state of the diode the radiation intact. Section 3.2 analyzes 
is activated. the radiation pattern reconfiguration of 
 the proposed antenna. 
 3.1. Frequency reconfiguration 
 According to a state combination of four 
 diodes from D1 to D4, the antenna can 
 (a) ON state (b) OFF state 
 be reconfigured in four frequencies 
 Fig. 3. Equivalent of PIN diode including 5 GHz, 6.81 GHz, 15.1 GHz, 
 and 18.74 GHz as being shown in Table 
 Table 2. Diode’s parameters 
 4. It is more clearly as seen in Figure 4 
 Parameter L CT RS RP and 5. At the first case of the frequency 
 Value 0.5nH 0.025pF 4Ω 10kΩ reconfiguration, the proposed antenna can 
 operate at 5GHz or 6.8 GHz at the same 
 Table 3. States of antenna direction angle of approximately -11°. 
 Active The second frequency reconfigurable case 
 States D1 D2 D3 D4 
 diodes is at the direction angle of +60°, the 
 1/4 
 S1 OFF OFF OFF ON antenna can also operates at 15.1 GHz or 
 ON 18.7 GHz band. 
 S2 ON ON OFF OFF 
 Table 4. The different states of the frequency 
 S3 OFF OFF ON ON reconfiguration 
 2/4 
 S4 ON OFF OFF ON 
 ON Stat F S11 B G 
 ƞ (%) 
 S5 OFF ON ON OFF e (GHz) (dB) (%) (dBi) 
 S1 5 2.67 4.7 64.78 
 S6 ON OFF ON OFF 17.17 
 S3 15.3 20.97 37.0 5.12 84.65 
 3/4 
 S7 ON ON ON OFF 
 ON S4 18.7 32.16 10.3 6.43 86.09 
 S6 6.8 21.68 6.81 4.63 82 
 4/4 
 S8 ON ON ON ON 
 ON 
3. SIMULATION RESULTS AND 
ANALYSIS 
The simulated results are performed on 
the CST MICROWAVE STUDIO 
commercial software that includes the (a) at S1 and S6 states 
12 Số 25 
 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
 (ISSN: 1859 - 4557) 
 Freq. S11 Gain ƞ (%) 
 State D (°) B (%) 
 (GHz) (dB) (dBi) 
 S7 6.7 19 13.6 2.56 4.89 81.06 
 S8 6.6 +6 23.0 5.96 5.51 85.52 
 The antenna operates at 14.2 GHz when 
 two over four diodes turn ON. Fig 6(a) 
 (b) at S3 and S4 states shows the main beam radiation direction 
 Fig 4. S11 parameters of frequency between these two states in plan = 90°. 
 reconfiguration At 6.7 GHz, the antenna can change its 
 direction from +6° to 19° as shown in 
 Fig 6(b). 
(a) at S1 and S6 states (b) at S3 and S4 states 
 Fig 5. Radiation pattern of frequency 
 reconfiguration (c) at 14.2 GHz band (b) at 6.7 GHz band 
 Fig. 6. The direction pattern of radiation 
3.2. Radiation pattern reconfiguration reconfiguration 
The proposed antennas are structured for 
elemental radiation at different points on 
the rectangular platform. Thus, the 
directional radiation at the two and three 
diodes is activated for different radiations. 
Table 5 and Figure 6 and 7 display the 
changing of the radiation antenna by 
turning the diodes OFF or ON at different (a) at 14.2 GHz band 
positions while maintaining the same 
frequency. 
 Table 5. The different states of the radiation 
 pattern reconfiguration 
 Freq. S11 Gain ƞ (%) 
 State D (°) B (%) 
 (GHz) (dB) (dBi) 
 S2 14.24 +52 26.7 20.75 4.8 77.19 (b) at 6.7 GHz band 
 Fig. 7. S11 parameters of radiation 
 S5 14.2 27 22.8 6.11 6.1 78.44 
 reconfiguration 
Số 25 13 
TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
(ISSN: 1859 - 4557) 
In Table 6, the proposed antenna is while their lower resonant frequencies 
compared with some other recently are the same. Though the operation 
reported reconfigurable antennas. It can frequencies in [9], [13], and [14] are 
be noted that the total size of antennas [8], lower four times. However, the volume of 
[12] is larger than the proposed antenna these publics is much larger. 
 Table 6. Comparison of the proposed antenna and recent public antennas 
 References Volume Radiation Switching Frequency Gain B (%) ƞ (%) 
 (mm3) patterns elements/ (GHz) (dBi) 
 reconfigurations 
 [8] 10,268.8 6 6/12 5.1 - 5.9; 10 14.5 80.5 
 [9] 4,275 4 4/4 2.25 - 3.16; 4.11 33.6 60 
 [11] 32,357.5 6 6/6 3.5 - 3.9; 5.2 - 6.0 10 72 - 86 
 −80° ≤ 휃 changing feed 
 [12] 79,849 ≤ +80° network 1 over 4 5.2; 10.5 5.8 74 
 channels 
 [13] 1,600,000 3 3/30 1.02 - 1.8; 5.2 - 6.2 58 80 - 85 
 [14] 136,687.5 2 2/2 1.74; 3 - 3.9 14.1 50 
 2.67; 5.96; 
 5; 6.6; 
 This 14.97; 64.78-
 2,473.086 2 4/4 14.2; 4.7 - 6 
 article 37.02; 86.09 
 15.3;18.7 
 7.82 
4. CONCLUSION 14.2 GHz to 18.7 GHz in the Ku band, the 
 antenna is suitable for communication 
In this paper, the proposed Padovan application in satellite protection. At 
antenna which can reconfigure with 5 GHz, antenna operation can access in 
frequency and radiation using PIN diode standard Wi-Fi at 5th generation is 
switching is presented. The output of the 802.11ac. All antenna performance 
antenna provides high efficiency and characters are analysed by CST 
overall small size compared to the simulation. The measurement results as 
reconfigurable antennas studied recently. well as the power effect on PIN diode will 
With reconfiguration in frequency from be done in the future research. 
 REFERENCES 
 [1] Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Yasir I.A. AlYasir, Raed A. Abd-Alhameed, 
 Ahmed M. Abdulkhaleq and James M. Noras, “Recent Developments of Reconfigurable Antennas 
 for Current and Future Wireless Communication Systems,” Electronics 2019, 26 January 2019. 
14 Số 25 
 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
 (ISSN: 1859 - 4557) 
 [2] Tayyaba Khan, MuhibUr Rahman, Adeel Akram, Yasar Amin and Hannu Tenhunen, “A Low-Cost 
 CPW-Fed Multiband Frequency Reconfigurable Antenna for Wireless Applications,” Electronics 
 2019, 14 August 2019. 
 [3] Jayendra Kumar, Banani Basu, Fazal Ahmed Talukdar, Arnab Nandi, “Stable-multiband frequency 
 reconfigurable antenna with improved radiation efficiency and increased number of multiband 
 operations,” IET Microwave, Antennas & Propagation, vol. 13, Iss.5, pp. 642-648, 28th February 
 2019. 
 [4] Ajay Yadav, Minakshi Tewari, and Rajendra P. Yadav, “Pixed Shap Ground Inspired Frequency 
 Reconfigurable Antenna,” Progress In Electromagnetics Research C, Vol. 89, 75-85, 2019. 
 [5] A. Vamseekrishna, B.T.P Madhav, T. Anilkumar, L.S.S. Reddy, “An IoT controlled octahedron 
 frequency reconfigurable multiband antenna for microwave sensing applications,” IEEE Sensors 
 Letters, vol. 2(3), 2019. 
 [6] V. Arun and L.R. Karl Marx, “Internet of Things Controlled Reconfigurable Antenna for RF 
 Harvesting,” Defense Science Journal, vol. 68, pp. 566-571, No. 6, November 2018. 
 [7] M. Jenath Sathikbasha and V.Nagarajan, “DGS based Multiband Frequency Reconfigurable 
 Antenna for Wireless Applications,” International Conference on Communication and Signal 
 Processing, April 4-6, 2019, India. 
 [8] Y. Yang and X. Zhu, "A Wideband Reconfigurable Antenna With 360° Beam Steering for 802.11ac 
 WLAN Applications," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 2, pp. 600-
 608, Feb. 2018. 
 [9] G. Jin, M. Li, D. Liu and G. Zeng, "A Simple Planar Pattern Reconfigurable Antenna Based on Arc 
 Dipoles," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1664-1668, Sept. 
 2018. 
 [10] Z. Gan, Z. Tu and Z. Xie, "Pattern-Reconfigurable Unidirectional Dipole Antenna Array Fed by 
 SIW Coupler for Millimeter Wave Application," in IEEE Access, vol. 6, pp. 22401-22407, 2018. 
 [11] G. Yang, J. Li, D. Wei, S. Zhou and R. Xu, "Pattern Reconfigurable Microstrip Antenna With 
 Multidirectional Beam for Wireless Communication," in IEEE Transactions on Antennas and 
 Propagation, vol. 67, no. 3, pp. 1910-1915, March 2019. 
 [12] H. Zhou et al., "Reconfigurable Phased Array Antenna Consisting of High-Gain High-Tilt Circularly 
 Polarized Four-Arm Curl Elements for Near Horizon Scanning Satellite Applications," in IEEE 
 Antennas and Wireless Propagation Letters, vol. 17, no. 12, pp. 2324-2328, Dec. 2018. 
 [13] S. Ahdi Rezaeieh and A.M. Abbosh, "Pattern-Reconfigurable Magneto electric Antenna Utilizing 
 Asymmetrical Dipole Arms," in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 4, 
 pp. 688-692, April 2019. 
 [14] Mingyu Sun, Zhe Zhang, Kang An, Xianghui Wang, Yuezhi Jiang, Aixin Chen, "Dual-Sense Circular 
 Polarization Antenna Based on Reconfigurable Orthogonal Network", International Journal of 
 Antennas and Propagation, vol. 2019, Article ID 1670786, 7 pages, 2019. 
 [15] X. Yi, L. Huitema and H. Wong, "Polarization and Pattern Reconfigurable Cuboid Quadrifilar 
 Helical Antenna," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2707-
 2715, June 2018. 
Biography: 
Số 25 15 
TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
(ISSN: 1859 - 4557) 
 Duong Thi Thanh Tu, received B.E, M.E and PhD degrees in Electronics and 
 Telecommunications from Hanoi University of Science in 1999 and 2005, and 
 2019, respectively. She is current senior lecturer at Faculty of Telecommunications 
 1, Posts and Telecommunications Institute of Technology. 
 Research interests include antenna design for new generation wireless networks 
 as well as the special structure of material such as metamaterial, electromagnetic 
 band gap structure. 
 Nguyen Tan Dung: His is current student at Faculty of Telecommunications 1, 
 Posts and Telecommunications Institute of Technology. 
 His current research interest is antenna design for new generation wireless 
 networks. 
 Hoang Thi Phuong Thao, Received B.E, M.E and PhD degrees in Electronics and 
 Telecommunications from Hanoi University of Science in 2004 and 2007, and 
 2019, respectively. She is current senior Lecturer at Electronics and 
 Telecommunications Faculty, Electric Power University. 
 Her current research interests are designing antenna, metamaterial, and 
 localization systems. 
16 Số 25 
 TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ NĂNG LƯỢNG - TRƯỜNG ĐẠI HỌC ĐIỆN LỰC 
 (ISSN: 1859 - 4557) 
Số 25 17 

File đính kèm:

  • pdfanten_tai_cau_hinh_theo_gian_do_buc_xa_va_tan_so_su_dung_chu.pdf