Đề tài Quá trình ra đề kiểm tra 1 tiết chương Hàm số lượng giác và phương trình lượng giác Đại số 11
I. Mục đích, yêu cầu đề kiểm tra
1. Về kiến thức: kiểm tra học sinh các kiến thức về các ham số lượng giác và nhận biết
các dạng phương trình lượng giác.
2. Về kỹ năng: Kiểm tra học sinh về kỹ năng giải phương trình hàm số lượng giác cũng
như cách biến đổi phương trình lượng giác
II. Mục tiêu dạy học của chương hàm số lượng giác và phương
trình lượng giác.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Đề tài Quá trình ra đề kiểm tra 1 tiết chương Hàm số lượng giác và phương trình lượng giác Đại số 11", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Đề tài Quá trình ra đề kiểm tra 1 tiết chương Hàm số lượng giác và phương trình lượng giác Đại số 11
TRƯỜNG ĐẠI HỌC SƯ PHẠM - ĐẠI HỌC HUẾ KHOA TOÁN HỌC -----ef&ef----- LÊ ĐỖ MINH THƯ ĐỀ TÀI: QUÁ TRÌNH RA ĐỀ KIỂM TRA 1 TIẾT CHƯƠNG HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ĐẠI SỐ 11 Học phần: Đánh giá kết quả giáo dục của học sinh Huế, 12/2018 TRƯỜNG ĐẠI HỌC SƯ PHẠM - ĐẠI HỌC HUẾ KHOA TOÁN HỌC -----ef&ef----- LÊ ĐỖ MINH THƯ ĐỀ TÀI: QUÁ TRÌNH RA ĐỀ KIỂM TRA 1 TIẾT CHƯƠNG HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC ĐẠI SỐ 11 Học phần: Đánh giá kết quả giáo dục của học sinh Giáo viên hướng dẫn: Nguyễn Đăng Minh Phúc Lớp: Toán 3T LỜI GIỚI THIỆU Đánh giá trong giáo dục toán có vai trò quyết định giúp nâng cao chất lượng học tập, đánh giá giúp quyết định việc dạy sẽ tiến hành như thế nào, học sinh học được cái gì và học như thế nào, Việc đánh giá trong giáo dục nói chung và giáo dục toán nói riêng cần phải thực hiện thường xuyên và liên tục. Trong giáo dục toán, kiểm tra 45 phút vào mỗi cuối chương học giúp giáo viên kiểm tra được kiến thức toán học thuộc vào chương đó, vừa gúp học sinh tổng kết được những kiến thức mình đã được trong chương vừa học. Trong chủ đề này, chúng ta sẽ tìm hiểu cách ra đề kiểm tra 45 phút cho học sinh lớp 11 chương hàm số lượng giác và phương trình lượng giác dưới hình thức trắc nghiệm kết hợp tự luận, từ đó thấy được quy trình ra đề để kiểm tra 45 phút là như thế nào để phù hợp với học sinh và mục tiêu dạy học. Lần đầu tiên làm đề kiểm tra, chắc chắn không tránh khỏi những sai sót, em rất mong nhận được những ý kiến đóng góp chân thành từ thầy và các bạn. Huế, ngày 17 tháng 12 năm 2018 Lê Đỗ Minh Thư Mục lục LỜI GIỚI THIỆU .......................................................... 1 I. Mục đích, yêu cầu đề kiểm tra ................................... 5 II. Mục tiêu dạy học của chương hàm số lượng giác và phương trình lượng giác. ............................................... 5 III. Bảng đặc trưng ........................................................ 7 IV. Đề kiểm tra .............................................................. 8 ĐÁP ÁN ...................................................................... 11 I. Mục đích, yêu cầu đề kiểm tra 1. Về kiến thức: kiểm tra học sinh các kiến thức về các ham số lượng giác và nhận biết các dạng phương trình lượng giác. 2. Về kỹ năng: Kiểm tra học sinh về kỹ năng giải phương trình hàm số lượng giác cũng như cách biến đổi phương trình lượng giác II. Mục tiêu dạy học của chương hàm số lượng giác và phương trình lượng giác. 1. Mục tiêu chương. Chương Chủ đề Kiến thức Kỹ năng Thái độ I: Hàm 1.Hàm số Hiểu được khái niệm Xác định được: tập xác định;tập Rèn số lượng lượng giác. hàm số lượng giác ( giá trị; tính chất chẵn lẻ; tính luyện giác và của biến số thực). tuần hoàn; chu kì; khoảng đồng tính phương biến, nghịch biến của các hàm chính trình số y = sin �, y = cos �, xác, cẩn lượng y = tan �, y = cot �. thận. giác Vẽ được đồ thị của các hàm số Khả : năng y = sin �, y = cos �, y = tan � tính toán , y = cot � và vận dụng 2. Phương Biết được các phương Giải thành thảo các phương vào các trình lượng trình lượng giác cơ trình lượng giác cơ bản. Biết sử dạng giác cơ bản: sin � = dụng máy tính bỏ túi để giải toán bản. �, cos � = �, phương trình lượng giác cơ bản. khác tan � = �, cot � = � nhau. và công thức nghiệm. 3. Một số Biết được dạng và Giải thành thạo phương trình phương cách giải phương thuộc dạng nêu trên trình lượng trình: bậc nhất, bậc hai giác đối với một hàm số thường lượng giác; phương gặp. trình asin � + bcos � = �; phương trình thuần nhất bậc hai đối với sin � �à cos �; phương trình có sử dụng công thức biến đổi để giải. 2. Mức độ nhận thức chương hàm số lượng giác và phương trình lượng giác Hàm số Chủ để Nhận biết Thông Vận dụng Khả năng lượng hiểu bậc cao giác và 1.Hàm số Nhận biết được các Hiểu Xác định phương lượng giác hàm số lượng giác cơ được được: tập xác trình bản khái định, tập giá lượng niệm trị; tính chất giác hàm số chẵn lẻ, tính lượng tuần hoàn,... giác ( của của các hàm biến số số lượng giác thực). cơ bản. 2. Phương Biết được các phương Giải thành trình lượng trình lượng giác cơ thạo phương giác cơ bản: sin � = trình lượng bản. �, cos � = �, giác cơ bản. tan � = �, cot � = � Sử dụng máy và công thức nghiệm. tính bỏ túi để giải các phương trình lượng giác cơ bản. 3. Một số Biết được dạng và Giải thành Áp dụng vào phương cách giải phương thạo phương các phương trình lượng trình: bậc nhất, bậc hai trình thuộc trình có sử giác đối với một hàm số dạng nêu dụng công thường lượng giác; phương trên. thức biến đổi gặp. trình để giải. asin � + bcos � = �; phương trình thuần nhất bậc hai đối với sin � �à cos �. III. Bảng đặc trưng 1. Bảng ma trận nội dung - mức độ chương NDC Nhận biết Thông hiểu Vận dụng Khả năng bậc Tổng cao MĐ KQ TL KQ TL KQ TL KQ TL 1.Hàm Câu Câu 2 Câu 3,4 Câu 7 số 1,5,6 21 (31.82%) lượng giác 2. Câu 7 Câu 8 Câu 5 Phương 9,10,12 (22.73%) trình lượng giác cơ bản 3. Một Câu Câu Câu Câu 10 số 13,14,18,20 15,17 22 11,16,19 (45.45%) phương trình lượng giác thường gặp. Tổng 4 6 7 2 3 100% (18.18%) (27.27%) (31.82%) (0.9%) (13.64%) Điểm 1.4 2.1 2.45 3 1.05 10 chưa (14%) (21%) (24.5%) (30%) (10.5%) (100%) quy đổi 3. Mô tả nội dung bài kiểm tra Câu 1: Nhận biết tính chẵn lẻ của hàm số lượng giác. Câu 2: Giá trị của hàm số tại 1 điểm. Câu 3: Tập xác định của hàm số. Câu 4:Xác định hàm số thông qua hình vẽ. Câu 5: Tính chẵn lẻ của hàm số Câu 6: Đồng biến, nghịch biến của hàm số. Câu 7: Nhớ được công thức lượng giác. Câu 8: Biện luận nghiệm của phương trình. Câu 9: Giải phương trình lượng giác đơn giản. Câu 10: Giải phương trình lượng giác. Câu 11:. Giải và tìm tập nghiệm của phương trình. Câu 12: Giải và tìm tập nghiệm của phương trình. Câu 13:. Giải phương trình lượng giác Câu 14: Giải phương trình lượng giác Câu 15: Giải và biện luận nghiệm của phương trình. Câu 16: Giải phương trình lượng giác Câu 17: Giải và biện luận nghiệm của phương trình. Câu 18: Giải và biện luận nghiệm của phương trình. Câu 19:Áp dụng công thức lượng giác vào bài toán thực tế. Câu 20: Giải phương trình lượng giác Câu 21: Giải phương trình lượng giác Câu 22: Giải phương trình lượng giác IV. Đề kiểm tra Đề kiểm tra gồm có 22 câu, trong đó 20 cấu trắc nghiệm và 2 câu tự luận Thời gian làm bài: 45 phút 1. Trắc nghiệm (7,0 điểm) Câu 1: Hàm số nào sau đây là hàm số chẵn? A. y = tan 3�. cos � B. y = sin � + sin � C.y = sin � + cos � D. � = sin � Câu 2: Cho hàm số �(�) = sin �, giá trị của hàm số tại � = là: A. B. C. √ D. √ . 1sin- x Câu 3: Tập xác định của hàm số y = là: 1sin+ x A. D = 0; 2p . B.ℝ\ + �2� . C. ℝ\ + �2� .. D. ℝ\ ± + �2� . [ ] Câu 4: Hàm số nào có đồ thị trên (−π;π ) được thể hiện như hình dưới đây? A. � = sin � B.� = cos � C.� = tan � D.� = cot � Câu 5. Hàm số nào sau đây là hàm số không chẵn, không lẻ? A. yx= sin . B. yx=+2 cos 2 x. C. yx=+sin x + tan x. D. yxx=+cos sin . Câu 6: Hàm số nào dưới đây đồng biến trên khoảng ; ? A.� = sin � B.� = tan � C.y = cos � D. � = cot � Câu 7: Nghiệm của phương trình 2cos2x =- 2 là: p p A. + kp . B. k2p . C. pp+ k2 . D. + k2p . 2 2 Câu 8: Với giá trị nào của m thì phương trình sin 2xm= có nghiệm. ém £-1 A.∀� ∈ ℝ. B. -£22m £. C. -£11m £. D. ê . ëm ³1 Câu 9: Nghiệm của phương trình: 2sin x-1=0. A.� = + �2�; � = + �2� B. � = + �2�. C. � = + �2�. D. � = + �2� æöp Câu 10: . Nghiệm của phương trình 2sinç÷ 4x -- 1= 0 là: èø3 pp7 pp A. xkxk=+; = + . B. xkx==+ppp;2 k . 8 2 24 2 p p C. xk==+2;pp x k 2. D. xkxk=+pp2; = . 2 2 Câu 11. Trên khoảng [0;p ] phương trình sin22xx- cos 3= 0 có bao nhiêu nghiệm? A. 4. B. 6. C. 2. D.8. Câu 12. Trên khoảng [-pp; ] phương trình cosxx= sin có bao nhiêu nghiệm? A. 4. B. 5. C. 6. D.2. Câu 13. Nghiệm của phương trình sinxx+= 3 cos 2 là pp5 pp2 A. xkxk=-+2;pp = + 2. B. xkxk=+2;pp = + 2. 44 33 pp3 pp5 C. xkxk=-+2;pp = + 2. D. xkxk=-+2;pp = + 2. 44 12 12 Câu 14. Nghiệm của phương trình sin22xx+ sin 2- 3cos x= 1 là p A. xkx=+pp; = arctan 2 + k. B. xk=+arctan 2 p. 2 p C. xk=+p . D. xkx==pp;arctan2 + k. 2 Câu 15. Với giá trị nào của m thì phương trình mxsin+= cos x 5 có nghiệm. ém £-2 A. m £-2. B. m ³ 2. C. -£22m £. D. ê . ëm ³ 2 2 æöxx Câu 16. Nghiệm của phương trình ç÷sin++ cos 3 cosx = 3 là èø22 p p p p A. -+k2p . B. -+kp . C. + k2p . D. + kp . 6 6 6 6 Câu 17. Nghiệm dương nhỏ nhất của phương trình (2sinxx- cos)( 1+= cos x) sin2 x là 5p p p A. x = . B. x = . C. x = p . D. x = . 6 6 12 Câu 18. Phương trình nào dưới đây tương đương với phương trình sin3xx+=+ cos2 1 2sin xx cos2 . ésinx = 0 ésinx = 0 ésinx = 0 ésinx = 0 ê ê A. ê . B. ê . C. 1 . D. 1. ësinx = 1 ësinx =- 1 êsin x = êsin x =- ë 2 ë 2 Câu 19. Hàng ngày mực nước của con kênh lên, xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh được tính tại thời điểm t (giờ, 0≤ � ≤ 24) trong một ngày được tính bởi công thức h = 3.cos + + 12. Hỏi trong một ngày có mấy thời điểm mực nước của con kênh đạt độ sâu lớn nhất ? A. 2. B. 1. C.3. D. 4 Câu 20. Tất cả các nghiệm của phương trình sin2x – cos2x – sinx + cosx – 1 = 0 là: A. x = + ��, � = ± + �2� B. � = ± + �2� C. x = + �� D. x = + �2� 2. PHẦN TỰ LUẬN (3,0 điểm) 1- sin x Câu 21. Tìm tập xác định của hàm số: y = . cosx - 1 Câu 22. Giải các phương trình sau: a) sin3xx+= cos3 1; b) 2sinxx+ cos- sin2 x - 1= 0. ĐÁP ÁN I. PHẦN TRẮC NGHIỆM Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Đáp A C C A B A C C A A B D A A D C B C B A án II. PHẦN TỰ LUẬN Câu Nội dung Điểm – Hàm số xác định Û-¹cosx 1 0 0,25 21 Û¹cosx 1 0,25 Û¹xk2,p ( k ÎZ). 0,25 – Vậy tập xác định của hàm số là � = ℝ \�2�, ��ℤ. 0,25 æöp sin3xx+= cos3 2 sin xÛ 2 sinç÷ 3xx+= 2 sin 0,5 èø4 é p 32xxk+=+p ê 4 Û ê 0,25 p 22a ê32xxk+=pp-+ ëê 4 é p xk=-+ p ê 8 Û ê . 0,25 3pp êxk=+ ëê 16 2 2sinxx+ cos- sin2 x - 1= 0Û( 2sin x -- 1)( 1 cos x) = 0 0,5 é 1 sin x = 0,25 Û ê 2 22b ê ëcosx = 1 é p xk=+2p ê 6 ê ê 5p Ûxkk=+2,p ( ÎZ) 0,25 ê 6 ê êxk= 2p ëê
File đính kèm:
- de_tai_qua_trinh_ra_de_kiem_tra_1_tiet_chuong_ham_so_luong_g.pdf