Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit

Currently, with the disappearance of fossil energy sources, finding new alternative energy sources

is very necessary such as: solar energy, wind energy, tidal energy, flow energy, . However, these

energy sources require high investment capital, large capacity, and bulky size. In circuits requiring

small power sources (below 12V), it is not applicable, or only used through intermediate devices

such as transformers, current transformers; Therefore, the application of energy from mechanical

vibration has been proposed as an optimal measure compared to the above methods.Energy recovery from mechanical vibration is the activity of reusing a part of the energy generated when

there is a fluctuation with a constant frequency on solid surfaces. Mechanical vibrations occur

mostly in production systems, and it also causes some damage. However, we can take advantage

of these mechanical vibrations to cater for some basic life requirements if they have the right vibration frequency and amplitude, or we can adjust to have optimal vibration conditions. This article

uses an intermediate control circuit to convert the energy generated by mechanical vibration into

electrical energy (current and voltage), in which the piezoelectric sensors or piezoelectric beam are

placed on the structures to be measured, we will receive oscillations at different frequencies, so that

we can analyze the damage caused by vibration and evaluate the application range of piezoelectric sensors and piezoelectric beam on a case-by-case basis. The purpose of the paper is to study a

constant frequency energy recovery circuit to create some initial parameters,the use a Bond-Graph

to optimally simulate this energy recovery process. This is also a very good solution for generating

energy for the SHM system from other mechanical energy sources.

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 1

Trang 1

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 2

Trang 2

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 3

Trang 3

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 4

Trang 4

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 5

Trang 5

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit trang 6

Trang 6

pdf 6 trang duykhanh 7200
Bạn đang xem tài liệu "Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit

Bond-Graph based simulation of sensors and piezoelectric beams’ ranges in energy recovery circuit
stly in production systems, and it also causes some damage. However, we can take advantage
of these mechanical vibrations to cater for some basic life requirements if they have the right vibra-
tion frequency and amplitude, or we can adjust to have optimal vibration conditions. This article
uses an intermediate control circuit to convert the energy generated by mechanical vibration into
electrical energy (current and voltage), in which the piezoelectric sensors or piezoelectric beam are
placed on the structures to bemeasured, wewill receive oscillations at different frequencies, so that
we can analyze the damage caused by vibration and evaluate the application range of piezoelec-
tric sensors and piezoelectric beam on a case-by-case basis. The purpose of the paper is to study a
constant frequency energy recovery circuit to create some initial parameters,the use a Bond-Graph
to optimally simulate this energy recovery process. This is also a very good solution for generating
energy for the SHM system from other mechanical energy sources.
Key words: Energy recovery, monitoring system, mechanical vibrations, piezoelectric, sensors,
SHM system
INTRODUCTION
Energy recovery is an area that provides the oppor-
tunity to develop science and technology applications
that are currently struggling to obtain a reliable source
of energy. This technology is suitable for Structural
Health Monitoring (SHM) systems because it takes
advantage of the different mechanical energy gener-
ated by themeans of transport inmoving process;The
SHM system monitors the operation, detects and lo-
cates the damage occurring in vehicle structure (air-
craft, space ship, etc.), thereby evaluating the nature
and sseverity of the damage. “Structural Health Mon-
itoring (SHM) systems have become a part of new
avionics systems which will formfuture aircraft. Their
objectives are to detect and locate damages occurring
within the aircraft structure.”1, “SHM has become a
part of new avionic systems which will form future
aircrafts. To allow their deployment throughout the
aircraft, they have to be autonomous. Vibration En-
ergyHarvesting is a promising solution to provide en-
ergy to such systems”2.
METHOS RESEARCH AND SURVEY
RESULTS
This is a research paper. Based on the parame-
ters measured from experiments on the control cir-
cuit model for piezoelectric sensors and piezoelectric
beams (Figure 1), then simulate the energy conver-
sion process, assessing the application ranges of each
sensor type to apply in practice.
For this study, the authormade a simple energy recov-
ery circuit (Figure 2), based on the working principle
of LTC3588-1 IC;Using this circuit to obtain themea-
sured parameters, the source of the experiment is the
mechanical vibration source generated from a vibra-
tor with a constant frequency. Based on the above pa-
rameters, we simulate on 20-sims software and com-
ment on results.
Energy recovery circuit and experimental
diagram
On the diagram, the piezoelectric sensors or piezo-
electric beams will be placed on a thin tin sheet (2 -
Cite this article : Thien D Q, Van N T H. Bond-Graph based simulation of sensors and piezoelectric 
beams’ ranges in energy recovery circuit. Sci. Tech. Dev. J. – Engineering and Technology; 2(SI1):SI22-
SI27.
SI22
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI22-SI27
Figure 1: Energy recovery experiment 3
Figure 2: Energy recovery principal
3 mm), the oscillating source will impact the tin plate
with a variable frequency vibration, and the sensors
will transfer mechanical energy into electrical energy,
introduced into the recovery circuit and the resulting
electrical signals to the subsequent processing.
The parameters taken from the experiments for piezo-
electric sensors or beams are different, which clearly
shows the difference inmethodology and scope of use
in this article.
Simulation
To simulate the above experiment, we uses the Bond-
Graph4 model. In the principle diagram (Figure 3),
it is easy to see that energy exists in two forms: the
input is mechanical energy (F, V) and the output is
the electrical energy (U, I). When performing simula-
tion with other tools (block diagram, signal diagram,
...), we have to convert to a unit. Bond-Graph, how-
ever, is in the ”multi-energy” field, meaning it can in-
corporate many fields seamlessly. This is a powerful
tool because of the ability to represent physical quan-
tities in the form of bi-directional exchange3. The di-
agram below shows the transformation from the prin-
ciple diagram to the Bond-Graph of the energy recov-
ery circuit.
We create Bond-Graph and put the data that are mea-
sured and calculated by the software 20-Sims (Fig-
Figure 3: Experimental diagram and Bond-Graph 5
Figure 4: Bond-Graph diagramfor whole circuit
ure 4), this graph will show the change of quantities
when the transition occurs. When testing the system
with oscillations at different frequencies, we obtain a
graph representing the dependence of the voltage as
well as the power on the oscillation frequency.
Research results
After the experiment, based on the data sheet of the
thin tin plate and the oscillation values generated on
it, we have constructed the graphs that distinguish the
function of the piezoelectric sensor and piezoelectric
beam as follows (Table 1).
Table 1: Post-experimental data of the sensor.
L 0.025m L 0.025m
H 0.01 P 1.155x1013
V 6.25x107 Mp 0.004813
S33 2.3x1011 TF 8.66x1014
D33 425 C 3.68x1011
e33 914 Pm 7700W
A 6.25x104 W 2376242
K 27173913043 Cc 571.25
SI23
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI22-SI27
Figure 5: Graphical representation of the quantities when the sensor is working
Figure 6: Voltage graph and power graph of the sensor interms of frequency
Throughout the Table 1, we find that there are some
very large parameters compared with the rest (Fig-
ure 5 , Figure 6). This is understandable because dur-
ing the simulation, these parameters are directly re-
lated to the operating range of the piezoelectric sensor
when working in high frequency conditions.
Table 2: Post-experimental data of the piezoelectric
beam.
L 0.025m L 0.025m
A 0.000625 hc 5x105
Hp 5x104 s11 1.7x1011
d31 -170 e33 914
K 0.1225 Cm 8.16
meq 0.0048125 R 0.01
In contrast to the piezoelectric beam (Table 2), the pa-
rameters are very small, the change in the parameters
through simulation is often difficult to see and it only
really changes when working at low frequencies (Fig-
ures 7 and 8).
DISCUSSION
Throughout the experiment, we noticed the funda-
mental differences in the use of piezoelectric sensors
and piezoelectric beams. It is found that piezoelectric
sensors only have resonance at high oscillation fre-
quencies, so they are suitable for use in vehicles oper-
ating under harsh conditions (aircraft, spaceship,).
In contrast, piezoelectric beams only have resonance
at low frequencies, so they are suitable for use in light
industries with high reliability.
SHM is a widely used system in developed countries
around the world. The purpose is to measure, retrieve
information and to provide a reasonable analysis of
the structural damage of large and modern buildings
(bridges, tall buildings, works of politic and military,
...)6. In recent years, combined with a number of en-
ergy recovery devices, SHM has been used in many
scientific and daily life applications, contributing to
SI24
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI22-SI27
Figure 7: Graphical representation of the quantities when the piezoelectric beam is working
Figure 8: Voltage graph andpower graph of piezoelectric beam in terms of frequency
significant benefits. The transportation industry is
not out of the law and it is particularly significant
for the aerospace industry. The characteristics of the
SHM system are well suited to this sector because of
the fluctuations that occur when vehicles travel, and
it further exerts its advantage for large and modern
means of transport 7.
Currently in Vietnam, SHM system has not been
widely applied. This system is only used to test the sta-
bility and safety of large, highly feasible bridges. How-
ever, it has not been widely used in other industries
as well as in life. Due to limited reasons, this paper
presents only very small aspects of the topic. There-
fore, we can only apply this energy recovery circuit
in the small power circuits, the output voltage is only
provided to the amplifier as well as the source for the
power circuits or the experimental set in the school.
CONCLUSION
Bond-Graph is a tool used in the field of mechatron-
ics, especially in the field of integrated energy. InViet-
nam, Bond-Graph has not been appliedwidely in sim-
ulation such as Matlab. Using Bond-Graph will open
up a new direction for similar studies.
Through the voltage and frequency-power graph, it
can be seen that the piezoelectric sensors only work
(resonate) at high vibration frequencies and large os-
cillaton resistance, in contrast, piezoelectric beam
works only where the frequency is low and the resistor
is small or medium. We recognize the value of use of
these devices when used in different working condi-
tions; especially in harsh climates like in Vietnam. In
the future, wireless technology will be studied to in-
crease the usability and economy for large and high-
space architectures, contributing to aesthetics. In the
future, we will study for liquid media in highly com-
plex scientific areas of social and industrial life.
CONFLICTS OF INTEREST
The authors declare that there is no conflict of interest
regarding the publication of this article.
SI25
Science & Technology Development Journal – Engineering and Technology, 2(SI1):SI22-SI27
AUTHOR CONTRIBUTIONS
Duong Quang Thien: Building models and simula-
tions, writing manuscripts of the paper.
NguyenThiHai Van: Adjusting the parameters, sim-
ulation, paper format.
REFERENCES
1. Sainthuile T, Grondel S, Delebarre C, Godts S, Paget C. En-
ergyharvestingprocessmodelingof anAeronautical Structural
health Monitoring system using a Bond-Graph approche. In-
ternational Journal of Aerospace Sciences. 2012;1(5):107–115.
Available from: https://doi.org/10.5923/j.aerospace.20120105.
03.
2. Anton SR, Sodano HA. A review of power harvesting us-
ing piezoelectric materials. Smart Materials and Structures.
2007;16(3). Available from: https://doi.org/10.1088/0964-1726/
16/3/R01.
3. Delebarre C, Sainthuile T, Grondel S, Paget C. Power harvesting
capabilities of SHM ultrasonic sensors. Hindawi Publising Cor-
poration, Smart Materials Research, Article ID 387638, 7 pages.
2012;Available from: https://doi.org/10.1155/2012/387638.
4. Sainthuile T, Delebarre C, Grondel S, Paget C. Bond graph
model of a thin SHM piezoelectric energy harvester. Proceed-
ings of the 8th International Workshop on Structural Health
Monitoring (F Chang, ed), (Stanford, CA, USA), DesTech Publi-
cations. 2011;p. 618–625.
5. Sainthuile T. Récupération d’Énergie Vibratoire pour Système
deContrôle Santé Intégréde StructureAéronautique. PhDThe-
sis, Université de Valenciennes et du Hainaut Cambrésis IEMN-
DOAE. 2012;.
6. Moulin E, Assaad J, Delebarre C, Kaczmarek H, Balageas D.
Piezoelectric transducer embedded in composite plate: Appli-
cation to Lamb wave generation. J Appl Phys. 1997;82:2049–
2055. Available from: https://doi.org/10.1063/1.366015.
7. Youbi FE, Grondel S, Assaad J. Signal processing for damage
detection using two different array transducers. Ultrasonics.
2004;p. 42803–42806. PMID: 15047387. Available from: https:
//doi.org/10.1016/j.ultras.2004.01.070.
SI26
Tạp chí Phát triển Khoa học và Công nghệ – Kĩ thuật và Công nghệ, 2(SI1):SI22-SI27
Open Access Full Text Article Bài Nghiên cứu
Trường Đại học Sư phạm Kỹ thuật, Đại
học Đà Nẵng
Liên hệ
Dương Quang Thiện, Trường Đại học Sư
phạm Kỹ thuật, Đại học Đà Nẵng
Email: dqthien@ute.udn.vn
Lịch sử
 Ngày nhận: 12-10-2018
 Ngày chấp nhận: 03-01-2019
 Ngày đăng: 31-12-2019
DOI : 10.32508/stdjet.v3iSI1.718
Bản quyền
© ĐHQG Tp.HCM. Đây là bài báo công bố
mở được phát hành theo các điều khoản của
the Creative Commons Attribution 4.0
International license.
Sử dụng Bond-Graph trong việc mô phỏng phạm vi ứng dụng của
cảm biến áp điện và chùm áp điện trongmạch thu hồi năng lượng
Dương Quang Thiện*, Nguyễn Thị Hải Vân
Use your smartphone to scan this
QR code and download this article
TÓM TẮT
Hiện nay, với sự biến mất của các nguồn năng lượng hóa thạch, việc tìm ra các nguồn năng lượng
mới thay thế là hết sức cần thiết như: năng lượng mặt trời, năng lượng gió, năng lượng thủy triều,
năng lượng dòng chảy,... Tuy nhiên các nguồn năng lượng này yêu cầu vốn đầu tư cao, công suất
khá lớn, kích thước cồng kềnh. Trong các mạch điện yêu cầu nguồn năng lượng công suất nhỏ
(dưới 25V) thì không thể ứng dụng được, hoặc chỉ được sử dụng thông qua các thiết bị trung gian
như máy biến áp, máy biến dòng; nên việc ứng dụng nguồn năng lượng từ dao động cơ học đã
được đặt ra như một biện pháp tối ưu so với các phương pháp trên.Thu hồi năng lượng từ rung
động cơ học là hoạt động tái sử dụng một phần năng lượng tạo ra khi có sự dao động với tần số
không đổi trên các bề mặt chất rắn. Rung động cơ học xuất hiện hầu hết trong các hệ thống sản
xuất, và nó cũng gây ra những thiệt hại nhất định. Tuy nhiên trong một vài trường hợp, chúng ta
có thể tận dụng các rung động cơ học này để phục vụ cho một số yêu cầu cơ bản trong đời sống,
nếu chúng có tần số rung và biên độ dao động phù hợp, hoặc chúng ta điều chỉnh để có điều kiện
dao động tối ưu. Trong bài báo này sử dụng một mạch điều khiển trung gian để biến đổi nguồn
năng lượng do rung động cơ học gây ra thành năng lượng điện (dưới dạng dòng điện và điện áp),
trong đó các cảm biến áp điện hoặc chùm áp điện được đặt trên các kết cấu cần đo, qua đó chúng
ta sẽ nhận được các dao động với những tần số khác nhau, từ đó ta có thể phân tích được các thiệt
hại do rung động gây ra, đồng thời đánh giá phạm vi ứng dụng của cảm biến áp điện và chùm áp
điện trong từng trường hợp cụ thể. Mục đích của bài báo là nghiên cứu một mạch điện thu hồi
năng lượng có tần số không đổi với quy mô nhỏ để tạo một số thông số ban đầu, sau đó sử dụng
Bond-Graph đểmô phỏngmột cách tối ưu quá trình thu hồi năng lượng này. Đây cũng là một giải
pháp rất tốt để tạo ra năng lượng cung cấp cho hệ thống SHM từ các nguồn năng lượng cơ học
khác.
Từ khoá: Thu hồi năng lượng, hệ thống quan trắc, rung động cơ học, áp điện, cảm biến
Trích dẫn bài báo này: Thiện D Q, Hải Vân N T. Sử dụng Bond-Graph trong việc mô phỏng phạm vi
ứng dụng của cảm biến áp điện và chùm áp điện trong mạch thu hồi năng lượng. Sci. Tech. Dev. J. -
Eng. Tech.; 2(SI1):SI22-SI27.
SI27

File đính kèm:

  • pdfbond_graph_based_simulation_of_sensors_and_piezoelectric_bea.pdf