Application of the collocation method with B-spline to the grlw equation
In this work, solitary – wave solution of the generalized regularized long wave
(GRLW) equation are obtained by using quintic B – spline collocation method. A linear
new method based on collocation of quintic B – splines. Applying the von – Neumann
stability analysis of the numerical scheme base on the von Neumann method is investigate.
We compute the error in the and the norms and in the variants #, and 9 of the
GRLW equation. The numerical result are tabulated and are ploted at different time levels.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Application of the collocation method with B-spline to the grlw equation", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Application of the collocation method with B-spline to the grlw equation
⎨U (x , 0) = U (a, 0) = 0 ⎪U (x , 0) = U (b, 0) = 0 ⎩ i = 0,1, , N. Eliminating δ , δ , δ and δ from the system (11), we get: Aδ = r, where A is the penta-diagonal matrix given by 54 60 6 0 0 0 ... 0 101 135 105 1 0 0 ... 0 4 2 4 1 26 66 26 1 0 ... 0 ... ... ... A ... ... ... 0 ... 0 1 26 66 26 1 105 135 101 0 ... 0 0 1 4 2 4 0 ... 0 0 0 6 60 54 and δ = (δ , δ , , δ ) , r = (f(x ), f(x ), , f(x )) . 3. STABILITY ANALYSIS To apply the Von-Neumann stability for the system (6), we must first linearize this system. 18 TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI We have: δ = ξ exp(iγjh) , i = √−1, (10) where γ is the mode number and h is the element size. Being applicable to only linear schemes the nonlinear term U U is linearized by taking U as a locally constant value ϑ. The linearized form of proposed scheme is given as ρ δ + ρ δ + ρ δ + ρ δ + ρ δ = ρ δ + ρ δ + ρ δ + ρ δ + ρ δ (11) where ρ = 1 − a + a , ρ = 26 − 10a + 2a , ρ = 66 − 6a , ρ = 26 + 10a + 2a , ρ = 1 + a + a , 5(α + εϑ )∆t 5a −20β a = , a = , a = . 2 h h Substitretion of δ = exp(iγjh)ξ , into Eq. (11) leads to ξ ρ exp(−2ihγ) + ρ exp(−iγh) + ρ + ρ exp(iγh) + ρ exp(2iγh) = ρ exp(−2iγh) + ρ exp(−iγh) + ρ + ρ exp(iγh) + ρ exp(2iγh). (12) Simplifying Eq. (12), we get: C − iD = , C + iD where C = (ρ + ρ ) cos(2ϕ) + (ρ + ρ )cosϕ + ρ , D = (ρ − ρ ) sin(2ϕ) + (ρ − ρ )cosϕ ϕ = γh. So |ξ| = = 1. Therefore, the linearized numerical scheme for the mGRLW equation is unconditionally stable. 4. NUMERICAL EXAMPLE We now obtain the numerical solution of the GRLW equation for some problems. To show the efficiency of the present method for our problem in comparison with the exact solution, we report L∞ and L using formula L∞ = max |U(x , t) − u(x , t)|, TẠP CHÍ KHOA HỌC SỐ 20/2017 19 L = h |U(x , t) − u(x , t)| , where U is numerical solution and u denotes exact solution. Three invariants of motion which correspond to the conservation of mass, momentum, and energy are given as I = udx, I = (u + βu )dx, I 2β(p + 1) = u − u dx. ε The exact solution of the GRLW is: E u(x, t) = , cosh (θ(x − x − ct)) where − ( + 1)( + 2)( − ) = , = . 2 2 The initial condition of Equation (1) given by: E f(x) = . cosh (θ(x − x ) To get the variants and error norms, we choose four sets of parameters by taking different values of p, h, c and ∆t and the same values of = 1, ε = 13, β = 0.1, a = 0, b = 100, x = 40. The variants and error norms are calculated from time t = 0 to t = 10. In the first case, we take p = 2, h = 0.1, ∆t = 0.1, c = 1.01. The variants and error norms are listed in Table 1. In this table, we get, the changes of variants I × 10 , I × 10 and I × 10 from their initial values are less than 0.3, 0.5 and 0.2, respectively. The error nomrs L and L∞ are less than 2.344479 × 10 and 1.166120 × 10 , respectively. In the second case, p = 2, h = 0.2, ∆t = 0.1, c = 1.01. The variants and error norms are listed in Table 2. In this table, we get, the changes of variants I × 10 , I × 10 and I × 10 from their initial values are less than 0.4, 0.5 and 0.2, respectively. The error nomrs L and L∞ are less than 2.344994 × 10 and 1.164312 × 10 , respectively. 20 TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI Table 1. Variants and error norms of the GRLW equation with = 2, = 1, = 13, = 0.1, = 0, = 100, = 40, ∆ = 0.01, ℎ = 0.1, = 1.01, ∈ [0, 10] t 0 2 4 6 8 10 I 0.678287 0.678293 0.678299 0.678305 0.678311 0.678170 I 0.029433 0.029433 0.029434 0.029435 0.029436 0.029437 I 0.000046 0.000046 0.000046 0.000046 0.000046 0.000046 L × 10 0 0.471693 0.942647 1.412144 1.879580 2.344479 L∞ × 10 0 0.222742 0.454863 0.691595 0.929801 1.166120 Table 2. Variants and error norms of the GRLW equation with = 2, = 1, = 13, = 0.1, = 0, = 100, = 40, ∆ = 0.01, ℎ = 0.1, = 1.01, ∈ [0, 10] t 0 2 4 6 8 10 I 0.678287 0.678293 0.678299 0.678305 0.678311 0.678317 I 0.029433 0.029433 0.029434 0.029435 0.029359 0.029437 I 0.000046 0.000046 0.000046 0.000046 0.000046 0.000046 L × 10 0 0.471801 0.942860 1.412461 1.879997 2.344994 L∞ × 10 0 0.222831 0.453852 0.691887 0.930200 1.164312 Thirdly, if p = 3, h = 0.1, ∆t = 0.01and ∆t = 0.025,c = 1. 01, and c = 1.001, then the numerical results are reported in Table 3 and Table 4. In Table 3, we see that, changes of the variants I × 10 , I × 10 and I × 10 from their initial value are less than 0.2, 0.5 and 0.1, respectively. The error nomrs L , L∞ are less than 0.951768 × 10 and 0.550608 × 10 , respectively. The motion of a single solitary wave is displayed at times t = 0, 6, 10 in Figure 1. In Table 4, changes of the variants I × 10, I × 10 and I × 10 from their initial value are less than 0.2, 0.8 and 0.9, respectively. The error nomrs L , L∞ are less than 3.495260 × 10 and 1.687792 × 10 , respectively. The motion of a single solitary wave is displayed at times t = 0, 6, 10 in Figure 2. TẠP CHÍ KHOA HỌC SỐ 20/2017 21 Table 3. Variants and error norms of the GRLW equation with = 3, = 1, = 13, = 0.1, = 0, = 100, = 40, ∆ = 0.01, ℎ = 0.1, = 1.01, ∈ [0, 10] t 0 2 4 6 8 10 I 1.759327 1.759348 1.759369 1.759390 1.759411 1.759432 I 0.214500 0.214509 0.214519 0.214529 0.214538 0.214548 I 0.004856 0.004856 0.004855 0.004853 0.004850 0.004848 L × 10 0 0.195276 0.388971 0.579943 0.767609 0.951768 L∞ × 10 0 0.110925 0.226747 0.339792 0.447835 0.550608 Table 4. Variants and error norms of the GRLW equation with = 3, = 1, = 13, = 0.1, = 0, = 100, = 40, ∆ = 0.025, ℎ = 0.1, = 1.001, ∈ [0, 10] t 0 2 4 6 8 10 I 2.540639 2.545207 2.549572 2.553716 2.557596 2.561150 I 0.144896 0.144910 0.144924 0.144938 0.144952 0.144966 I 0.000753 0.000753 0.000753 0.000753 0.000753 0.000753 L × 10 0 0.413323 1.087032 1.854905 2.668369 3.495260 L∞ × 10 0 0.484072 0.880360 1.204781 1.470369 1.687792 Figure 1. Single solitary wave with p =3, = 1, = 13, = 0.1, = 0, = 100, = 40, ∆ = 0.01, h = 0.1, c = 1.01, t = 0, 6, 10 Finally, we choose the quantities p = 4, α = 1, ε = 122, β = 360, a = 0, b = 100, x = 40, ∆t = 0.01, h = 0.1, c= 0.1.001. 22 TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI The numerical computation are done up to t = 20. The obtained results are given in Table 5 which clearly shows that the changes of the variants I × 10 , I × 10 and I × 10 from their initial value are less than 0.6, 0.2 and 0.4, respectively. The error nomrs L , L∞ are less than 2.647811 × 10 and 0.685645 × 10 , respectively. Solitary wave profiles are depicted at time levels in Figure 3. Figure 2. Single solitary wave with p =3, Figure 3. Single solitary wave with = 1, = 13, = 0.1, = 0, p = 4, = 1, = 122, = 360, = 100, = 40, ∆ = 0.025, h = 0.1, = 0, = 100, = 50, ∆ = 0.01, c = 1.001, t = 0, 6, 10 h = 0.1, c = 1.001, t = 0, 10, 20. Table 5. Variants and error norms of the GRLW equation with = 4, = 1, = 122, = 360, = 0, = 100, = 50, ∆ = 0.01, ℎ = 0.1, = 1.001, ∈ [0,20] t 0 5 10 15 20 I 10.516333 10.516566 10.516546 10.516299 10.515780 I 1.104843 1.104892 1.104888 1.104837 1.104729 I 0.012194 0.012195 0.012195 0.012194 0.012191 L × 10 0 0.611587 1.243961 1.917332 2.647811 L∞ × 10 0 0.150865 0.315534 0.493848 0.685645 For the purpose of illustration of the presented method for solving the GRLW equation, we use parameters p =2, 3, 5, 7, 9 with α = 1, ε = 122, β = 360, a = 0, b = 100, x = 50. The parameters ∆t, h, c are given by different values. The error norms at t = 20 are listed in Table 6 and Table 7. The plot of the estimated solution at time t = 10 in Figure 4. From these tables, we see that, the error norms L , L∞ are quite small for present method. TẠP CHÍ KHOA HỌC SỐ 20/2017 23 b) p = 3 a) p = 2 a) p = 5 b) p = 7 c) p = 9 Figure 4. Single solitary wave with = 1, = 122, = 360, = 0, = 100, = 50, t = 0, 10, 20. Table 6. Error norms for single solitary wave for the wave of the GRLW equation with = 1, = 122, = 360, = 0, = 100, = 50, t = 20. p = 2 p = 3 p = 5 1.0001 1.001 1.0001 1.001 1.0001 1.001 h ∆ L 0.1 0.01 0.004482 0.088766 0.047287 0.818658 0.377707 5.529901 × 0.2 0.01 0.002899 0.088349 0.037387 0.822547 0.340665 5.535953 10 0.1 0.05 0.002830 0.089675 0.038396 0.830843 0.356645 5.559609 0.2 0.05 0.003044 0.090680 0.040881 0.837106 0.367814 5.597731 L∞ 0.1 0.01 0.000739 0.023181 0.010066 0.213927 0.092579 1.423652 × 0.2 0.01 0.000739 0.023181 0.010066 0.213927 0.092578 1.423652 10 0.1 0.05 0.000738 0.023181 0.010065 0.213926 0.092579 1.423653 0.2 0.05 0.000738 0.023181 0.010065 0.213926 0.092578 1.423652 24 TRƯỜNG ĐẠI HỌC THỦ ĐÔ HÀ NỘI Table 7. Error norms for single solitary wave for the wave of the GRLW equation with = 1, = 122, = 360, = 0, = 100, = 50, t = 20 p = 7 p = 9 1.0001 1.001 1.0001 1.001 h ∆ L 0.1 0.01 1.037021 13.513875 1.895832 23.097371 × 0.2 0.01 0.969144 13.539687 1.824487 23.188402 10 0.1 0.05 1.010284 13.578334 1.883411 23.220042 0.2 0.05 1.033718 13.654954 1.925747 23.333349 L∞ 0.1 0.01 0.261341 3.446876 0.488891 5.835234 × 0.2 0.01 0.261340 3.446875 0.488890 5.835235 10 0.1 0.05 0.261341 3.446876 0.488891 5.835234 0.2 0.05 0.261340 3.446875 0.488890 5.835235 5. CONCLUSION In this work, we have used the quintic B-spline collocation method for solution of the GRLW equation. We tasted our scheme through single solitary wave and the obtained results are tabulaces. These tables show that, the changes of variants are small. The error norms L , L∞ for the GRLW equation are acceptable. So the present method is more capable for solving these equations. REFERENCES 1. S.S.Askar and A.A.Karawia (2015), “On solving pentadiagonal linear systems via transformations”, Mathematical Problems in Engineering, Vol. 2015, pp.1-9. 2. S.Battal Gazi Karakoça, Halil Zeybek (2016), “Solitary - wave solutions of the GRLW equation using septic B - spline collocation method”, Applied Mathematics and Computation, Vol. 289, pp.159-171. 3. H.Che, X.Pan, L.Zhang and Y.Wang (2012), “Numerical analysis of a linear-implicit average scheme for generalized Benjamin-Bona-Mahony-Burgers equation”, J.Applied Mathematics, Vol. 2012, pp.1-14. 4. D.J.Evans and K.R.Raslan (2005), “Solitary waves for the generalized equal width (GEW) equation”, International J. of Computer Mathematics, Vol. 82(4), pp.445-455. 5. C.M.García-Lospez, J.I.Ramos (2012), “Effects of convection on a modified GRLW equation”, Applied Mathematics and Computation, Vol. 219, pp.4118-4132. 6. C.M.García-Lospez, J.I.Ramos (2015), “Solitari waves generated by bell-shaped initial conditions in the invicis and viscous GRLW equations”, Applied Mathematical Modelling, Vol. 39(21), pp.6645-6668. 7. P.A.Hammad, M.S.EI–Azab (2015), “A 2N order compact finite difference method for solving the generalized regularized long wave (GRLW) equation”, Applied Mathematics and Computation, Vol. 253, pp.248-261. TẠP CHÍ KHOA HỌC SỐ 20/2017 25 8. B.Hong, D.Lu (2008), “New exact solutions for the generalized BBM and Burgers-BBM equations”, World Journal of Modelling and Simulation, Vol. 4(4), pp.243-249. 9. S.Islam, F.Haq and I.A.Tirmizi (2010), “Collocation method using quartic B-spline for numerical solution of the modified equal width wave equation”, J.Appl.Math.Inform, Vol. 28(3- 4), pp.611-624. 10. A.G.Kaplan, Y.Dereli (2017), “Numerical solutions of the GEW equation using MLS collocation method”, International Journal of Modern Physics C, Vol. 28(1), 1750011, pp.1-23. 11. M.Mohammadi, R.Mokhtari (2011), “Solving the generalized regularized long wave equation on the basis of a reproducing kernel space”, J. of Computation and Applied Mathematics, Vol. 235, pp.4003-4014. 12. R.Mokhtari, M.Mohammadi (2010), “Numerical solution of GRLW equation using sinc- collocation method”, Computer Physics Communications, Vol. 181, pp.1266-1274. 13. E.Pindza and E.Maré (2014), “Solving the generalized regularized long wave equation using a distributed approximating functional method”, International Journal of Computational Mathematics, Vol. 2014, pp.1-12. 14. P.M.Prenter (1975), “Splines and Variational Methods”, Wiley, New York. 15. T.Roshan (2011), “A Petrov – Galerkin method for solving the generalized equal width (GEW) equation”, J. Comput.Appl.Math., Vol. 235, pp.1641-1652. 16. T.Roshan (2012), “A Petrov–Galerkin method for solving the generalized regularized long wave (GRLW) equation”, Computers and Mathematics with Applications, Vol. 63, pp.943-956. 17. M.Zarebnia and R.Parvaz (2013), “Cubic B-spline collocation method for numerical solution of the Benjamin-Bona-Mahony-Burgers equation”, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 7(3), pp.540-543. 18. H.Zeybek and S.Battal Gazi Karakoça (2017), “Application of the collocation method with B - spline to the GEW equation”, Electronic Transactions on Numerical Analysis, Vol. 46, pp.71-88. PHƯƠNG PHÁP COLLOCATION VỚI CƠ SỞ B-SPLINE BẬC 5 GIẢI PHƯƠNG TRÌNH GRLW Tóm tắt: Trong bài báo này, nghiệm số của phương trình GRLW sẽ tìm được dựa trên cơ sở sử dụng cơ sở B–spline bậc 5. Chúng ta chứng minh lược đồ sai phân ứng với phương trình là ổn định vô điều kiện theo phương pháp Von–Neumann. Thuật toán được giải minh họa với sóng đơn và thể hiện bằng đồ thị. Kết quả số chứng tỏ phương pháp đưa ra có thể giải phương trình trên. Từ khóa: Phương trình GRLW, spline bậc 5, phương pháp Collocation, phương pháp sai phân hữu hạn.
File đính kèm:
- application_of_the_collocation_method_with_b_spline_to_the_g.pdf