Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần

Trong nghiên cứu này, kỹ thuật huỳnh quang tia X phản xạ toàn phần (TXRF) được ứng dụng

đã xác định được 24 nguyên tố, bao gồm: Al, P, S, Cl, K, Sr, Sc, Ti, Mn, Fe, Co, Cu, Zn, As,

Br, Ba, La, Eu, Tb, Dy, Ta, Pb, Th, và U trên rêu Barbula Indica tại thành phố Bảo Lộc (Việt

Nam) từ tháng mười một năm 2019 đến tháng ba năm 2020. Kết quả cũng đã dự đoán những

nguồn ô nhiễm mang lại. Ở nghiên cứu này cho thấy việc sử dụng mẫu rêu có sẵn, và kỹ thuật

TXRF là hiệu quả, rất thuận lợi để xác định sự lắng động các nguyên tố vết trong không khí

cho những quốc gia đang phát triển, đặc biệt là Việt Nam và các nước Châu Á.

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 1

Trang 1

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 2

Trang 2

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 3

Trang 3

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 4

Trang 4

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 5

Trang 5

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 6

Trang 6

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 7

Trang 7

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 8

Trang 8

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 9

Trang 9

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 12 trang duykhanh 15020
Bạn đang xem 10 trang mẫu của tài liệu "Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần

Phân tích nguyên tố vết lắng đọng trong không khí qua rêu barbula indica tại thành phố bảo lộc sử dụng kỹ thuật huỳnh quang tia X phản xạ toàn phần
he standardized sum of the 
squares of the differences between the measured and calculated deconvoluted intensities 
is calculated. The value of the fit quality should preferably be less than 10. High values 
(>10) are an indication of misidentified or unidentified elements, respectively, or 
inaccurate gain correction. The fit quality function is ∑
1
𝛿𝑖
2 (𝑦𝑖+1 − 𝑦𝑖)
2𝑛2
𝑖=𝑛1
 where n1 is 
the first channel of peak i (the left channel), n2 is the last channel of peak i (the right 
channel), yi+1 is the number of counts for channel i+1, yi is the number of counts for 
channel i, and 𝛿𝑖 = √𝑁𝑖 + 2𝑁𝐵𝐺 where δi is the standard deviation for the peak area, Ni is 
the net peak area for element i, and NBG is the background area. 
3. RESULTS AND DISCUSSIONS 
Up to 24 elements, including Al, P, S, Cl, K, Sr, Sc, Ti, Mn, Fe, Co, Cu, Zn, As, 
Br, Ba, La, Eu, Tb, Dy, Ta, Pb, Th, and U, were detected with the TXRF technique in 
moss samples collected at 11 locations in Baoloc. The trace element concentrations in the 
Nguyen An Son, Doan Phan Thao Tien, Le Hong Khiem, Nguyen Thi Minh Sang, Nguyen Thi Nguyet Ha, Pham Thi Ngoc Ha, 
Pham Dang Quyet, Nguyen Dinh Trung, Ho Huu Thang, and Nguyen Truong Duong Cam 
104 
moss samples are presented in Table 1, for which the errors in the concentrations are less 
than 10%. 
Table 1. The concentration of trace elements in moss samples (in mg.kg-1) 
El 
Site 
BL01 BL02 BL03 BL04 BL05 BL06 BL07 BL08 BL09 BL10 BL11 
Al 2157.00 2154.00 2156.00 2156.00 4820.00 4581.00 4687.00 2320.00 1472.00 1455.00 1455.00 
P 503.00 506.00 505.00 505.00 1048.00 839.00 591.00 803.00 978.00 1014.00 1014.00 
S 689.00 678.00 684.00 684.00 2715.00 2568.00 2678.00 682.00 1154.00 1240.00 1240.00 
Cl 767.00 741.00 754.00 754.00 927.00 857.00 987.00 750.00 897.00 970.00 970.00 
K 2512.00 2478.00 2495.00 2495.00 2926.00 3540.00 3320.00 2489.00 8102.00 8199.00 8199.00 
Sr 6.93 6.21 6.57 5.98 6.33 5.42 5.70 6.25 5.20 11.79 11.79 
Sc 0.12 0.98 0.55 0.75 2.17 2.43 1.95 nd nd nd 0.86 
Ti 143.00 168.00 156.00 156.00 320.00 350.00 340.00 147.00 47.00 46.00 46.00 
M
n 
46.00 42.00 44.00 44.00 70.00 74.00 82.00 39.00 68.00 74.00 74.00 
Fe 924.00 911.00 918.00 918.00 5400.00 5064.00 5321.00 841.00 2540.00 2625.00 2625.00 
Co nd 0.34 nd nd 6.21 5.46 4.72 nd 2.50 2.35 2.35 
Cu 7.18 10.60 8.89 8.42 12.50 15.40 9.24 8.47 15.40 16.63 16.63 
Zn 57.00 52.00 54.00 47.00 214.00 176.00 87.00 51.00 689.00 746.00 746.00 
As 2.46 2.33 2.40 2.40 5.73 5.92 6.45 2.37 0.55 0.52 0.52 
Br 2.73 1.97 2.35 2.35 3.42 4.12 3.72 2.22 2.78 2.47 2.47 
Ba 18.64 12.56 15.60 15.60 26.58 22.78 23.47 14.59 4.58 5.18 5.18 
La 3.58 2.45 3.02 3.02 14.78 17.89 23.96 2.83 1.02 1.36 1.36 
Eu nd nd nd 0.34 5.45 6.54 5.89 nd 0.25 0.20 0.20 
Tb nd nd nd 0.27 4.32 4.87 5.12 nd nd nd 0.47 
Dy 0.18 0.23 0.21 0.21 3.21 4.27 3.87 nd 0.26 0.29 0.29 
Ta nd nd nd 0.78 4.21 4.52 5.15 nd nd 0.45 0.37 
Pb 2.74 3.54 3.14 3.14 6.54 6.87 5.98 3.27 17.63 18.03 18.03 
Th 0.26 0.87 0.57 0.57 2.14 1.87 1.96 0.67 nd nd 0.34 
U 0.77 0.73 0.75 nd 3.21 2.85 2.49 nd 0.45 0.74 0.74 
Note: El - element 
The mean concentrations of the elements in the moss samples from Baoloc 
decreased as: K > Al > Fe > S > Cl > P > Zn > Ti > Mn > Ba > Cu > Pb > Sr > La > As 
> Br > Co > Eu > Ta > Tb > Dy > U > Sc > Th. 
Contamination factor (CF) scales were used to determine the contamination levels 
of each element in the sample (Fernández & Carballeira, 2001). The CF was calculated 
DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY] 
105 
as the ratio of the mean value of each heavy metal in a moss sample to the background 
level, as in the equation (Hakanson, 1980): 𝐶𝐹𝑖 =
𝐶𝑖
BGi 
 where Ci is the mean value of the 
ith element from the investigated area, and BGi is the average value of the three sample 
sites which have the lowest concentration of the corresponding metal from the 
investigated area. 
The CF values comprise six levels: CF < 1: no contamination, 1 < CF ≤ 2: 
suspected contamination, 2 < CF ≤ 3.5: slight contamination, 3.5 < CF ≤ 8: moderate 
contamination, 8 < CF ≤ 27: serious contamination, and 27 < CF: extreme contamination 
(Fernández & Carballeira, 2001). Table 2 shows the contamination factors for 24 elements. 
Table 2. The contamination factors of trace elements in the moss samples 
El AL P S Cl K Sr Sc Ti Mn Fe Co Cu 
CF 1.8 1.5 2.0 1.1 1.7 1.3 1.9 3.8 1.4 2.9 1.3 1.5 
Table 2. The contamination factors of trace elements in the moss samples (tt) 
El Zn As Br Ba La Eu Tb Dy Ta Pb Th U 
CF 5.3 5.4 1.3 3.0 5.5 7.9 0.8 5.9 2.6 2.7 2.2 1.8 
A comparison of this result with those obtained in previous studies of Barbula 
indica moss in Vietnam and moss in European countries (Barandovski, Stafilov, Sajn, 
Frontasyeva, & Baceva, 2012) was carried out. The results of the comparison are listed 
in Table 3. 
Table 3. Comparison of the mean trace element concentrations from atmospheric 
deposition on Barbula indica moss at Baoloc with some previous work (in mg.kg−1) 
Element 
Baoloc 
city our 
work 
Doan Phan et al., 2019 
Khiem et al., 
2020 Barandovski 
et al., 2012 
Hue city Hoian city Hochiminh city Hanoi capital 
Na 620.00 1310.00 930.00 
Mg 1550.00 1620.00 1290.00 3866.66 1900.00 
Al 2674.00 5800.00 3200.00 4800.00 10591.19 1900.00 
Si 
39595.76 
P 755.00 
1100.14 1100.00 
S 1365.00 
3238.92 
Cl 852.00 1700.00 2100.00 780.00 1711.59 
K 4250.00 16000.00 17000.00 12000.00 14401.56 4600.00 
Sr 7.11 
Nguyen An Son, Doan Phan Thao Tien, Le Hong Khiem, Nguyen Thi Minh Sang, Nguyen Thi Nguyet Ha, Pham Thi Ngoc Ha, 
Pham Dang Quyet, Nguyen Dinh Trung, Ho Huu Thang, and Nguyen Truong Duong Cam 
106 
Table 3. Comparison of the mean trace element concentrations from atmospheric 
deposition on Barbula indica moss at Baoloc with some previous work (in mg.kg−1) 
(tt) 
Element 
Baoloc 
city our 
work 
Doan Phan et al., 2019 
Khiem et al., 
2020 Barandovski 
et al., 2012 
Hue city Hoian city Hochiminh city Hanoi capital 
Sc 0.89 1.09 0.80 1.81 
Ti 174.00 271.00 205.00 524.00 691.60 
V 12.20 5.11 8.08 3.50 
Cr 11.00 6.80 19.90 26.73 3.50 
Mn 60.00 74.00 88.00 77.00 170.95 130.00 
Fe 2553.00 3720.00 4810.00 5430.00 6025.18 1500.00 
Co 2.18 1.40 1.01 3.28 
Ni 4.20 2.70 9.50 4.42 3.50 
Cu 11.76 
27.20 3.50 
Zn 265.00 126.00 254.00 178.00 397.53 20.00 
As 2.88 2.30 3.00 4.10 16.11 
Se 1.40 0.70 0.39 
Br 2.78 10.40 7.70 12.80 36.11 
Kr 
Rb 
151.17 
Sb 1.40 0.89 1.00 
Cs 1.58 1.18 5.30 
Ba 14.98 58.00 83.00 101.00 1545.55 34.00 
La 6.84 3.10 2.24 5.60 
Ce 6.20 4.20 11.70 
Sm 0.51 0.35 1.15 
Eu 1.72 
Tb 1.37 
Dy 1.18 
Ta 1.41 0.09 0.07 0.15 
Pb 8.08 
231.55 4.60 
Th 0.84 1.78 0.86 1.49 
U 1.16 0.62 0.23 1.10 
For Hue, Hoian, and Hochiminh City, the element concentrations are near the 
values found in our work and some are slightly higher. For Hanoi, all element 
DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY] 
107 
concentrations are higher than in Baoloc. The concentrations of Al, P, S, Cl, K, Ti, Mn, 
Fe, Cu, Zn, As, Br, Ba, and Pb in Hanoi are higher than in Baoloc: 4.0, 1.5, 2.4, 2.0, 3.4, 
4.0, 2.8, 2.4, 2.3, 1.5, 5.6, 13.0, 103, and 28.7, respectively, especially for barium and lead. 
According to Pacyna and Pacyna (2002) and Cucu-Man, Mocanu, Culicov, 
Steinnes, and Frontasyeva (2004), the main pollution sources in our study area can be 
explained as follows: 
• Sample sites: BL01, BL02, BL03, and BL04 are major roads where traffic 
activity is high. In particular, BL01 and BL02 are at the entrance of Baoloc 
pass; BL03 and BL04 are in the city center of Baoloc; BL10 and BL11 are in 
the area between Baoloc and Dilinh district (along 20th road); BL08, and 
BL09 are the places where silk is produced. Notably, the pollution in these 
places is affected by windblown dust and traffic emissions, especially 
gasoline-burning vehicles, cars, and motorbikes. 
• Three special sample sites: B05, B06, and B07 are near the Tan Rai alumina 
refinery. All concentrations of trace elements, especially aluminum, are 
higher there than at other moss sample sites in this work. That suggests the 
pollution at these sites was effected by aluminum ore processing. 
4. CONCLUSIONS 
In this investigation, we applied the TXRF technique to determine trace element 
concentrations from atmospheric deposits on Barbula indica moss samples and to 
estimate the metal pollution in Baoloc. The TXRF technique is useful and suitable. The 
result is expressed through the number of analytical elements. A total of 24 elements were 
detected, including Al, P, S, Cl, K, Sr, Sc, Ti, Mn, Fe, Co, Cu, Zn, As, Br, Ba, La, Eu, 
Tb, Dy, Ta, Pb, Th, and U. We compared our data with some previous research on trace 
element atmospheric deposition on Barbula indica moss in Vietnam, and the results show 
that the element concentrations at Baoloc are lower than other locales, although a little 
higher than the concentrations found by Barandovski et al. (2012). Most of the elements 
from atmospheric deposits in Baoloc are at the “suspected” to “slight” contamination 
level. The air pollution sources of these elements are possibly due to traffic and aluminum 
ore processing. 
ACKNOWLEDGMENTS 
This work is supported by the Ministry of Education and Training of Vietnam 
under the project code: B2019-DLA-04. 
REFERENCES 
 Abdullah, M. Z. B., Saat, A. B., & Hamzah, Z. B. (2012). Assessment of the impact of 
petroleum and petrochemical industries to the surrounding areas in Malaysia using 
mosses as bio-indicator supported by multivariate analysis. Environmental 
Nguyen An Son, Doan Phan Thao Tien, Le Hong Khiem, Nguyen Thi Minh Sang, Nguyen Thi Nguyet Ha, Pham Thi Ngoc Ha, 
Pham Dang Quyet, Nguyen Dinh Trung, Ho Huu Thang, and Nguyen Truong Duong Cam 
108 
Monitoring and Assessment, 184, 3959-3969. https://link.springer.com/article 
/10.1007/s10661-011-2236-y. 
Barandovski, L., Stafilov, T., Sajn, R., Frontasyeva, M., & Baceva, K. (2012). Air 
pollution study in Macedonia using a moss biomonitoring technique, ICP-AES 
and AAS. Macedonian Journal of Chemistry and Chemical Engineering, 32(1), 
89-107. https://mjcce.org.mk/index.php/MJCCE/article/view/137. 
Cucu-Man, S., Mocanu, R., Culicov, O., Steinnes, E., & Frontasyeva, M. (2004). 
Atmospheric deposition of metals in Romania studied by biomonitoring using the 
epiphytic moss hypnum cupressiforme. International Journal of Environmental 
Analytical Chemistry, 84(11), 845-854. https://doi.org/10.1080/03067310420002 
68152. 
Doan Phan, T. T., Trinh, T. T. M., Khiem, L. H., Frontasyeva, M. V., & Quyet, N. H. 
(2019). Study of airborne trace element pollution in Central and Southern Vietnam 
using moss (Barbula indica) technique and neutron activation analysis. Asia-
Pacific Journal of Atmospheric Sciences, 55, 247-253. https://doi.org/10.1007 
/s13143-018-0065-4. 
Fernández, J. A., & Carballeira, A. (2000). Differences in the responses of native and 
transplanted to atmospheric pollution: A possible role of selenium. Environmental 
Pollution, 110(1), 73-78. https://doi.org/10.1016/S0269-7491(99)00278-X. 
Fernández, J. A., & Carballeira, A. (2001). A comparison of indigenous mosses and 
topsoils for use in monitoring atmospheric heavy metal deposition in Galicia 
(Northwest Spain). Environmental Pollution. 114(3), 431-441, https://doi.org/10. 
1016/S0269-7491(00)00229-3. 
Frontasyeva, M. & Harmens, H. (2019). Monitoring of atmospheric deposition of heavy 
metals, nitrogen and pops in Europe using bryophytes. Retrieved from 
https://icpvegetation.ceh.ac.uk/sites/default/files/ICP%20Vegetation%20moss%
20monitoring%20manual%202020.pdf. 
Frontasyeva, M. V., Galinskaya, T. Y., Krmar, M., Matavuly, M., Palov, S. S., 
Povtoreyko,  Stainnes, E. (2004). Atmospheric deposition of heavy metals in 
northern Serbia and Bosnia-Herzegovina studied by the moss biomonitoring, 
neutronactivation analysis and GIS technology. Journal of Radioanalytical and 
Nuclear Chemistry, 259, 141-147. https://link.springer.com/article/10.1023/B: 
JRNC.0000015819.67830.60. 
Gjengedal, E., & Steinnes, E. (1990). Uptake of metal ions in moss from artificial 
precipitation. Environmental Monitoring and Assessment, 14, 77-87. 
https://link.springer.com/article/10.1007/BF00394359. 
Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A 
sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10. 
1016/0043-1354(80)90143-8. 
Harmens, H., Norris, D. A., Steinnes, E., Kubin, E., Piispanen, J., Alber, R.,  
Zechmeister, H. G. (2010). Mosses as biomonitors of atmosphericheavy metal 
DALAT UNIVERSITY JOURNAL OF SCIENCE [NATURAL SCIENCES AND TECHNOLOGY] 
109 
deposition: Spatial patterns and temporal trends in Europe. Environmental 
Pollution, 158(10), 3144-3156. https://doi.org/10.1016/j.envpol.2010.06.039. 
Khiem, L. H., Sera, K., Hosokawa, T., Quyet, N. H., Frontasyeva, M. V., Trinh, T. T. M., 
 Tien, D. P. T. (2020). Assessment of atmospheric deposition of metals in Ha 
Noi using the moss bio-monitoring technique and proton induced X-ray emission. 
Journal of Radioanalytical and Nuclear Chemistry, 324, 43-54. https://doi.org/ 
10.1007/s10967-020-07066-z. 
Lee, C. S. L., Li, X., Zhang, G., Peng, X., & Zhang, L. (2005). Biomonitoring of trace 
metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling 
Mountains and the Pearl River Delta, Southern China. Atmospheric Environment, 
39(3), 397-407. https://doi.org/10.1016/j.atmosenv.2004.09.067. 
Pacyna, J. M., & Pacyna, E. G. (2002). An assessment of global and regional emissions 
of trace metals to the atmosphere from anthropogenic sources worldwide. 
Environmental Reviews, 9(4), 269-298. https://doi.org/10.1139/a01-012. 
Rühling, Å., & Tyler, G. (1968). An ecological approach to the lead problem. Botaniska 
Notiser, 121, 321-342. 
Rühling, Å. & Tyler, G. (1969). Ecology of heavy metals-a regional and historical study. 
Botaniska Notiser, 122, 248-259. 
Rühling, Å. & Tyler, G. (1970). Sorption and retention of heavy metals in the woodland 
moss Hylocomium splendens (Hedw.) Br. et Sch. Oikos, 21(1), 92-97. 
Sucharová, J., & Suchara, I. (1998). Atmospheric deposition levels of chosen elements in 
the Czech Republic determined in the framework of the International 
Bryomonitoring Program 1995. Science of The Total Environment, 223(1), 37-52. 
https://doi.org/10.1016/S0048-9697(98)00306-4. 
Towett, E. T., Shepherd, K. D., & Cadisch, G. (2013). Quantification of total element 
concentrations in soils using total X-ray fluorescence spectroscopy (TXRF). 
Science of The Total Environment. 463-464, 374-388. https://doi.org/10.1016/ 
j.scitotenv.2013.05.068. 

File đính kèm:

  • pdfphan_tich_nguyen_to_vet_lang_dong_trong_khong_khi_qua_reu_ba.pdf