Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh

Ngày nay, máy bay không người lái (drone) được sử dụng rộng rãi

cho các mục đích khác nhau vì chúng không quá đắt. Các drone được

sử dụng làm các phương tiện mang vật liệu nổ, máy ảnh và vật bất

hợp pháp có thể gây ra các mối đe dọa an ninh. Thị giác máy tính có

thể được áp dụng để phát hiện các drone hoạt động bất hợp pháp một

cách hiệu quả trong nhiều điều kiện khác nhau. Một hệ thống dựa

trên máy tính sử dụng các camera hiện đại có thể phát hiện ra các

drone nhỏ ở xa. Hệ thống cũng có thể nhận biết được các drone tốc

độ thấp và không được điều khiển từ mặt đất. Hơn nữa, hệ thống có

thể hiển thị các drone thực sự. Điều này giúp hệ thống thân thiện với

người dùng. Bài báo này đề xuất một cách tiếp cận lai kết hợp hai

mạng nơ-ron tích chập mới nổi: Faster R-CNN và YOLOv2 để phát

hiện các drone trong ảnh. Kết quả thử nghiệm cho thấy rằng phương

pháp này có thể thêm tới gần 5% và hơn 11% cho độ chính xác và độ

tái hiện cho Faster R-CNN và thêm tới 3% và hơn 6% cho hai chỉ số

này cho YOLOv2. Việc phát hiện tốt hơn này là kết quả của sự kết

hợp của hai mạng. Nếu một mạng không thể phát hiện các drone

trong một bức ảnh, mạng khác có thể trợ giúp.

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 1

Trang 1

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 2

Trang 2

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 3

Trang 3

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 4

Trang 4

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 5

Trang 5

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 6

Trang 6

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh trang 7

Trang 7

pdf 7 trang duykhanh 8960
Bạn đang xem tài liệu "Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh

Kết hợp faster R-CNN và yolov2 cho việc phát hiện máy bay không người lái trong ảnh
nt information for detection. Furthermore, the sliding window 
technique causes computationally costly exhaustive search. In [5], CBCs (Cascades of Boosted 
Classifiers) are trained on Haar feature (feature achieved by Harr-like transformation), HOG 
feature and LBP (Local Binary Pattern) feature for drone detection. In [6], SURF feature and 
Neural Network are used for drone detection. 
 The study in [7] first preprocesses an image by morphological operations to highlight 
potential drones. Then, hidden Markov models are employed to track and detect drones. The 
detection decision is made after target information is collected and collated over a period of time. 
 The method in [8] partitions video into overlapping slices. Each slice contains N frames. The 
accuracy of drone detection can be improved by increasing the number of overlapping frames. 
Spatio-temporal cubes (st-cubes) with different scales for width, height and time duration are 
created by sliding window technique. A motion compensation algorithm is used for st-cutes to 
create st-cubes with a target object (drone) at center. Then, boosted trees or Convolutional Neural 
Networks (CNN) are employed to categorize each st-cute as containing a drone or not. If more 
than one drones are detected for the same spatial location at different scales, the most confident 
one is reserved. 
 In [9], the Contiguous Outlier Representation via Online Low-rank Approximation 
(COROLA) technique is first employed for detecting the appearance of a small moving object in 
a frame and the CNN algorithm is applied for drone recognition. 
 Deep neural networks in some studies are used as begin-to-end drone detection models. 
YOLOv2 [10] and YOLOv3 [11] are used in [12], [13], [1] and Faster R-CNN [14] is used in [2] 
for drone detection. 
 In this paper, we propose a method combining two emerging convolutional neural networks: 
Faster R-CNN and YOLOv2 to detect drones in images. They both have lower layers that are 
convolutional layers. These convolutional layers take an image as input and output feature maps. 
The feature maps are then inputs for object localization and classification. 
 91 Email: jst@tnu.edu.vn 
 TNU Journal of Science and Technology 226(06): 90 - 96 
 Faster R-CNN (for more detailed see [14]) joins the region proposal network RPN and the 
object detection network Fast R-CNN [15]. The two networks share convolutional layers. These 
layers have input of an image and output of feature maps. RPN takes the input image and 
produces region proposals and their objectness score. Region proposals are generated by sliding a 
small network with fully connected convolutional layers over the feature map. A spatial window 
of the feature map is taken as input for the small network. Each sliding window is mapped to a 
lower-dimensional feature. This feature is then taken as input for two sibling fully connected 
layers: a box-regression layer that outputs the encoded coordinates of k anchor boxes (also called 
anchors), and a box-classification layer that outputs 2-k scores estimating probability of object or 
not-object for each proposal. Fast R-CNN begins with convolutional and max pooling layers that 
take the input image and generate feature maps. Then, a region of interest (RoI) pooling layer 
uses max pooling to convert the features inside a region proposed by RPN into a small feature 
map with a fixed spatial extent. Next, fully connected layers map the small feature map to a 
feature vector. Finally, two fully connected sibling layers process the feature vector and outputs 
N bounding boxes with respect to N object classes and N+1 probability estimates for N object 
classes and background. A non-maximum suppression technique is independently used for each 
class to remove low confidence bounding boxes. 
 YOLOv2 (for more detailed see [10]) also starts with convolutional and max pooling layers. 
These lower layers are trained to extract high-level features. Then, the features from the layers at 
the two highest levels are combined to get the final feature map of an input image. YOLOv2 
views the input image as a grid of SxS cells. Each grid cell is in relation with a set of anchor 
boxes. These anchor boxes’ centers are the same with the grid cell’s one. Their widths and 
heights are predefined by k-mean based on the objects’ dimensions in the training data so that 
these dimensions best present the objects’ dimensions. For each anchor box, YOLOv2 predicts a 
bounding box, a confidence score that reflects how confident the bounding box containing an 
object is, and conditional probabilities that the object belongs to classes. Then, low confidence 
bounding boxes are also filtered out as in Faster R-CNN. 
 The difference between Faster R-CNN and YOLOv2 is that Faster R-CNN proposes potential 
regions (containing objects) for classification and continues refining these regions while 
YOLOv2 preforms region detection and classification in just one time. 
 The following sections include: section 2 presents the proposed method, section 3 presents the 
experiments and results of drone detection by Faster R-CNN, YOLOv2 and the proposed method, 
and the last section is about conclusion. 
2. Proposed method 
 The proposed method in this paper is rooted from our observation that some drones in images 
are detected by YOLOv2 while they are not detected by Faster R-CNN and vice versa. The 
method combines Faster R-CNN and YOLOv2 to detect drones so that when some drones are not 
detected by one network, they are detected by the other. 
 shows the activity diagram of the proposed method. A rounded rectangle represents an 
activity. A rectangle describes an activity’s input or output data. A black circle represents the 
start node of the diagram. An encircled black circle denotes the end node of the diagram. A solid 
arrow represents a transition from one activity to another. A condition for a transition is written 
in square brackets. A dash arrow denotes a connection between an activity and its input or output 
data. A synchronization bar (a filled rectangle) indicates start or end of parallel activities. At first, 
Faster R-CNN and YOLOv2 are trained separately for drone detection. The input of this step is 
training images and the ground truth bounding boxes of drones in the training images. The output 
of this step is Faster R-CNN and YOLOv2 networks. Then, for each image taken from a set of 
testing images, the two networks are used to detect drones in parallel. This step produces the 
bounding boxes of detected drones and corresponding confidence scores. If Faster R-CNN’s 
 92 Email: jst@tnu.edu.vn 
 TNU Journal of Science and Technology 226(06): 90 - 96 
minimum confidence score is greater than YOLOv2’s one or YOLOv2’s minimum confidence 
score is less than 0.5, then Faster’s R-CNN detection results are selected, otherwise YOLOv2’s 
ones are selected. 
 Figure 1. Proposed method 
3. Experiments and results 
 In this section, dataset for training and testing Faster R-CNN and YOLOv2 networks for 
drone detection is first described. Parameters for training Faster R-CNN and YOLOv2 are then 
presented. The experimental results of testing Faster R-CNN, YOLOv2 and the hybrid approach 
are presented at last. 
3.1. Training and testing dataset 
 A dataset of 498 images of the quadcopter DJI Phantom 3 obtained from Google image search 
tool, and screenshots from videos from YouTube [16] were used for training and testing Faster 
 93 Email: jst@tnu.edu.vn 
 TNU Journal of Science and Technology 226(06): 90 - 96 
R-CNN and YOLOv2 network and testing the hybrid approach. Training data took 350 images 
and testing data took 148 images. 
 The training data was augmented by randomly flipping original images and the bounding 
boxes horizontally at each iteration of a training epoch. This helps diversify the training data 
without having to increase the number of labeled training samples. The testing data was not 
augmented for unbiased evaluation. Figure 2 presents an original image (the left image) and its 
modified image (the right image) created by horizontal flip. 
 Figure 2. Data augmentation 
3.2. Parameter settings 
 The values of training parameters for Faster R-CNN were set as the best ones that were 
experimentally determined in [2]. These parameters include learning rate, momentum co-
efficient, maximum number of epochs, IoU ranges for negative and positive anchor boxes at each 
sliding window position, number of images to sample mini-batchs, number of anchor boxes at 
each sliding window and pretrained network. IoU is the ratio of intersection over union of a 
ground truth bounding box and an anchor box. These training parameters were described detailed 
in [2]. Their values are shown in Table 1. Table 2 presents those for YOLOv2. These values were 
determined after several trials. YOLOv2 does not require IoU ranges for positive and negative 
anchor boxes as Faster R-CNN. 
 Table 1. Faster R-CNN training parameters 
 Parameter Value 
Learning rate 0.001 
Momentum co-efficient 0.09 
Maximum number of epochs 30 
IoU range for negative anchors [0 0.3] 
IoU range for positive anchors [0.6 1] 
#images to sample mini-batches 1 
#anchor boxes 10 
Pretrained network vgg19 
 Faster R-CNN and YOLOv2 were respectively trained with parameter settings in Table 1 and 
Table 2 by stochastic gradient descent. Then, Faster R-CNN and YOLOv2 networks were 
combined as described in section 2 to detect drones in testing images. 
 Table 2. YOLOv2 training parameters 
 Parameter Value 
Learning rate 0.001 
Momentum co-efficient 0.9 
Maximum number of epochs 30 
#images to sample mini-batches 5 
#anchor boxes 7 
Pretrained network resnet50 
 94 Email: jst@tnu.edu.vn 
 TNU Journal of Science and Technology 226(06): 90 - 96 
3.3. Results 
 We used precision and recall metrics on the whole set of test images to evaluate the proposed 
method, where the metrics were calculated as the following equations. TP, FP and FN are the 
numbers of true positives, false positives, and false negatives of the prediction on the whole set of 
testing images respectively. A positive detection is true if the ratio of intersection over union of 
its predicted box and a ground truth box is greater than or equal to 0.5, otherwise it is false. The 
number of false negatives is the number of drones that were not detected. 
 푃
 푒푠푖표푛 = (1) 
 푃 + 퐹푃
 푃 (2) 
 푒 푙푙 = 
 푃 + 퐹 
 Table 3 shows the precisions and recalls of Faster R-CNN, YOLOv2 and the hybrid approach. 
We can see that the precision and recall of the hybrid approach are almost 5% and more than 
11% higher than those of Faster R-CNN, and are 3% and more than 6% higher than those of 
YOLOv2. This shows that Faster R-CNN and YOLOv2 can work together to improve the 
accuracy of drone detection. 
 Table 3. Precision and recall comparison between different methods 
 Method Precision Recall 
 Faster R-CNN 0.877 0.796 
 YOLOv2 0.896 0.847 
 Proposed method 0.926 0.908 
4. Conclusion 
 In this paper, a hybrid method combining two emerging deep neural networks Faster R-CNN 
and YOLOv2 for drone detection was proposed. The two networks in the hybrid approach are 
first trained independently. Then, they are both used to detect drones in parallel. If the drone 
detection results of YOLOv2 are not confident, then those of Faster R-CNN are selected. The 
experimental results show that the hybrid approach can increase precision by almost 5% and 3%, 
and increase recall by more than 11% and 6% for Faster R-CNN and YOLOv2 respectively. This 
shows that Faster R-CNN and YOLOv2 can work together to more precisely detect drones. 
 REFERENCES 
[1] E. Unlu, E. Zenou, N. Riviere, and P.-E. Dupouy, "Deep learning-based strategies for the detection and 
 tracking of drones using several cameras," IPSJ Transactions on Computer Vision and Applications, 
 vol. 11, no. 7, pp. 1-13, 2019. 
[2] V. V. Pham, "A new approach using computer vision for drone detection," TNU Journal of Science and 
 Technology, vol. 225, no. 11, pp. 11-18, 2020. 
[3] NovoQuad, "ND-BU001 Standard Anti-Drone System," 2020. [Online]. Available: 
 https://www.nqdefense.com/products/anti-drone-system/nd-bu001-standard-anti-drone-system/. 
 [Accessed Jan. 5, 2021]. 
[4] DRONESHIELD, "DroneSentry: Autonomous Drone Detection & Countermeasure," 2020. [Online]. 
 Available: https://www.droneshield.com/sentry. [Accessed Mar. 15, 2020]. 
[5] G. Fatih, Ü. Göktürk, S. Erol, and K. Sinan, "Vision-Based Detection and Distance Estimation of Micro 
 Unmanned Aerial Vehicles," Sensors, vol. 15, no. 9, pp. 23805-23846, 2015. 
[6] T. Ahmed, T. Rahman, B. B. Roy, and J. Uddin, "Drone Detection by Neural Network Using GLCM 
 and SURF," Journal of Information Systems and Telecommunication, vol. 9, no. 33, pp. 15-24, 2021. 
[7] L. Mejias, S. McNamara, J. Lai, and J. Ford, "Vision-based detection and tracking of aerial targets for 
 UAV collision avoidance," IEEE/RSJ International Conference on Intelligent Robots and Systems, 
 Taipei, Taiwan, 2010 
[8] A. Rozantsev, V. Lepetit, and P. Fua, "Detecting Flying Objects Using a Single Moving Camera," IEEE 
 Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 5, pp. 879-892, 2016. 
 95 Email: jst@tnu.edu.vn 
 TNU Journal of Science and Technology 226(06): 90 - 96 
[9] A. Sharjeel, S. A. Z. Naqvi, and M. Ahsan, "Real time drone detection by moving camera using 
 COROLA and CNN algorithm," Journal of the Chinese Institute of Engineers, vol. 44, no. 2, pp. 128-
 137, 2021. 
[10] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," IEEE Conference on Computer 
 Vision and Pattern Recognition, Honolulu, HI, USA, 2017. 
[11] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," 2018. [Online]. Available: 
 arXiv:1804.02767. [Accessed Jan. 5, 2021]. 
[12] C. Aker and S. Kalkan, "Using Deep Networks for Drone Detection," IEEE International Conference 
 on Advanced Video and Signal Based Surveillance, Lecce, Italy, 2017. 
[13] M. Wu, W. Xie, X. Shi, P. Shao, and Z. Shi, "Real-Time Drone Detection Using Deep Learning 
 Approach," International Conference on Machine Learning and Intelligent Communications, 
 Hangzhou, China, 2018. 
[14] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with 
 region proposal networks," Conference on Neural Information Processing Systems, Montreal, Canada, 
 2015. 
[15] R. Girshick, "Fast R-CNN," IEEE International Conference on Computer Vision, Santiago, Chile, 
 2015. 
[16] C. Reiser, "Bounding box detection of drones (small scale quadcopters) with CNTK Fast R-CNN," 
 2017. [Online]. Available: https://github.com/creiser/drone-detection. [Accessed Jan. 5, 2021]. 
 96 Email: jst@tnu.edu.vn 

File đính kèm:

  • pdfket_hop_faster_r_cnn_va_yolov2_cho_viec_phat_hien_may_bay_kh.pdf