Đánh giá horn-dl trong quan hệ so sánh với horn-sroiq
Web ngữ nghĩa là một lĩnh vực nghiên cứu phát triển rất nhanh chóng trong những thập
niên gần đây. Một lớp quan trọng trong kiến trúc của Web ngữ nghĩa là ngôn ngữ Web
Ontology (OWL) được xây dựng dựa trên các logic mô tả. Họ các logic mô tả này là các
ngôn ngữ hình thức phù hợp với việc biểu diễn tri thức khái niệm. Vì vậy việc nghiên cứu
các ngôn ngữ quy luật hiệu quả cho Web ngữ nghĩa là một vấn đề được nhiều nhà nghiên
cứu quan tâm. Bài báo nhằm nghiên cứu và đánh giá Horn-DL trong quan hệ so sánh với
các ngôn ngữ có độ phức tạp tương đương1. Dựa trên các phân tích chúng tôi kết luận
được rằng, khả năng biểu diễn tri thức của ngôn ngữ Horn-DL mạnh hơn hẳn các ngôn
ngữ đã đưa ra so sánh.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Tóm tắt nội dung tài liệu: Đánh giá horn-dl trong quan hệ so sánh với horn-sroiq
n ngữ chính quy trên R. Một box chính quy các RIA là một tập hữu hạn R h gồm các RIA thỏa mãn {R S1S2Sk | (S1 S2 Sk ⊑ R) Rh} là một hệ viết lại chính quy đối xứng S trên bảng chữ R sao cho nếu R R là một vai trò đơn thì chỉ có các xâu độ dài 1 hoặc 0 nhận được từ R khi sử dụng hệ S. Một RBox chính quy là một tập R = R a R h , trong đó R a là một tập hữu hạn các khẳng định vai trò và R h là một box chính quy các RIA. Với A C, R R, a I, n là một số tự nhiên và S là một vai trò đơn, các khái niệm được xác định bởi văn phạm dạng BNF như dưới đây: C ::= ⊤ | ⊥ | A | ¬C | C⊓C | C⊔C | R.C | R.C |{a}| U.C |U.C| R.Self | nS.C | nS.C Ta ký hiệu U R là vai trò phổ quát; C, D là các khái niệm. Sử dụng ký hiệu R.C để viết tắt cho R.C⊓R.C. Với A C, R R, a I và S là một vai trò đơn, các khái niệm ở vế trái Horn-DL (gọi tắt là khái niệm vế trái), được xác định bởi văn phạm dạng BNF như sau: C ::= ⊤ | A | C⊓C | C⊔C | R.C | R.C |{a}| U.C |U.C| S.Self Với A C, D là một khái niệm vế trái, R R, a I và S là một vai trò đơn, các khái niệm ở vế phải Horn-DL (gọi tắt khái niệm vế phải), được xác định bởi văn phạm dạng BNF như sau: C ::= ⊤ | ⊥ | A | ¬D | C⊓C | ¬D⊔C | R.C | R.C |{a}| U.C |U.C| R.Self| nS.C | nS.C Một tiên đề thuật ngữ Horn-DL, còn gọi là tiên đề (bao hàm) TBox là một biểu thức có dạng C ⊑ D, với C là khái niệm vế trái và D là khái niệm vế phải. TBox Horn-DL là một tập hữu hạn các tiên đề thuật ngữ Horn-DL. ABox Horn-DL là một tập hữu hạn các khẳng định có dạng C(a), r(a, b), ¬s(a, b), a≐b hoặc a b, với C là khái niệm vế trái, r R+ và s là tên vai trò đơn. Một cơ sở tri thức Horn-DL là một bộ R, T, A, với R là một RBox chính quy, T là một TBox Horn-DL và A là một ABox Horn-DL. Ngữ nghĩa của cơ sở tri thức Horn-DL là một diễn giải I = I, I, trong đó I là một tập không rỗng gọi là miền của I và I là hàm diễn giải của I tương ứng mỗi cá thể a I với một phần tử aI I, mỗi vai trò r R+ với một quan hệ nhị phân r I I I. Đánh giá Horn-DL trong quan hệ so sánh với Horn SROIQ 4 Định nghĩa I = {x, x | x I}, UI = I I và ( )I = (rI)-1 = {y, x | x, y rI} với r R+. Hàm diễn giải được mở rộng đối với tất cả các khẳng định và các tiên đề như trong Bảng 1 và đối với các khái niệm phức như sau: ⊤I = I , ⊥I = ∅, {a}I = {aI}, (R.Self)I = {x I | x, x RI }, (¬C)I = I \ CI, (C ⊓ D)I = CI DI, (C ⊔ D)I = CI DI, (R.C)I = {x I | y (x, y RI ⇒ y CI)}, (U.C)I = {x I | I CI }, (R.C)I = {x I | y (x, y RI y CI)}, ( nS.C)I = {x I | #{y | x, y SIvà y CI} n}, ( nS.C)I = {x I | #{y | x, y SIvà y CI} n}, (U.C)I = {x I | CI ∅}. Bảng 1. Cú pháp và ngữ nghĩa của Horn-DL. Cú pháp Ngữ nghĩa (I) S1S2Sk⊑R I k II SSS ...21 ⊑ R I RBox (II) Irr(S) S I phản phản xạ (III) Disj( ',SS ) II SS ' = ∅ (IV) C ⊑ D CI DI TBox (V) C(a) a I CI ABox (VI) r(a, b) aI, bI rI (VII) ¬s(a, b) aI, bI sI (VIII) a≐b aI = bI (IX) a b aI ≠ bI Trong bảng này, a, b I, r R+ và s là tên vai trò đơn, Si, R R, và S, S’ là các vai trò đơn, k ≥ 0, C là khái niệm vế trái, D là khái niệm vế phải. Như vậy, các tiên đề bao hàm TBox là một họ các tiên đề bao hàm dạng (IV). 2.2. Logic mô tả Horn-SROIQ và Horn-SHOIQ Logic mô tả Horn-SROIQ [9] được định nghĩa là một đoạn của SROIQ đầy đủ [5] nhưng trong đó không cho phép sử dụng phép hợp. Giả sử NC, NR, NI là các tập hữu hạn, tương ứng là tập tên các khái niệm, tên các vai trò và các cá thể; Giả sử rằng {⊤, ⊥} ⊂ NC. Nếu r NR, thì r và là các vai trò, lúc đó các vai trò đảo ngược của chúng tương ứng sẽ là = và = r. Trong ngôn ngữ SROIQ đầy đủ, một tiên đề bao hàm vai trò tổng quát (RIA) có dạng s1 s2 sk ⊑ r, với r và si là các vai trò. Một tập các RIA R là chính quy nếu có một thứ tự cục bộ nghiêm ngặt ≺ trên các vai trò sao cho s ≺ r nếu và chỉ nếu ≺ r, và mỗi RIA trong R phải có dạng (I) hoặc (V) trong Bảng 2. Các vai trò đơn trong R được định nghĩa một cách đệ quy như sau: (a) r NR là vai trò đơn nếu r ở vế phải của các RIA dạng s⊑r và s là vai trò đơn; và (b) là vai trò đơn nếu r là vai trò đơn. Một TBox T có dạng RT’, trong đó R là một tập chính quy chứa các RIA và T’ là một tập các tiên đề có các dạng từ (VI) đến (XII) trong Bảng 2. Cơ sở tri thức Horn-SROIQ là một bộ K = T, A, với T là một TBox và ABox A là một tập không rỗng các khẳng định có dạng (XIII) và (XIV). TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học – ĐH Huế Tập 7, Số 1 (2017) 5 Logic mô tả Horn-SHOIQ thu được bằng cách giới hạn Horn-SROIQ như sau: chỉ cho phép các RIA dạng (I), (II’) và (V) trong Bảng 2; không cho phép các tiên đề rời nhau như dạng (VI) ở Bảng 2, các khái niệm dạng r.Self cũng không cho phép. Cũng như các logic mô tả khác, ngữ nghĩa của cơ sở tri thức ở đây được cho bởi diễn giải I = I, I. Diễn giải này ánh xạ mỗi cá thể a NI tương ứng với mỗi phần tử a I I, mỗi khái niệm A NC với mỗi A I I và mỗi vai trò r NR với một quan hệ nhị phân r I I I, sao cho ⊤I = I, ⊥I = ∅. Ánh xạ I được mở rộng đến tất cả các khái niệm và các vai trò như được giới thiệu trong Bảng 2. Bảng 2. Cú pháp và ngữ nghĩa của Horn-SROIQ. Cú pháp Ngữ nghĩa (I) ⊑ r rI TBox (II) ⊑ r I rI (II’) s1 ⊑ r r I (III) r ⊑ r rI I rI (IV) r ⊑ r I rI rI (V) r r ⊑ r rI rI rI (VI) Disj(s,s’) sI s’ I = ∅ (VII) A⊓B ⊑ C AI BI CI (VIII) A ⊑ R.B AI {x I | y.x, y RI ⇒ y BI} (IX) A ⊑ R.B AI {x I | y.x, y RI y BI} (X) R.A ⊑ B {x I | y.x, y RI y BI} AI (XI) A ⊑ 1s.B A I {x I | 1} (XII) A ⊑ m s.B A I {x I | m} (XIII) a:A a I AI ABox (XIV) (a, b):r aI, bI rI Trong bảng này, m 0, a, b NI, r NR, R là một vai trò và s, s’ là các vai trò đơn. Ngoài ra, = s1 s2 sk, k 1 và với mỗi 1 i k thì si là một vai trò thỏa mãn si ≺ r. A, B và C là các tên khái niệm, các định danh dạng {a} hoặc có thể là các dạng r.Self. 2.3. Bài toán thỏa được của cơ sở tri thức Một diễn giải I là một mô hình của cơ sở tri thức KB, nếu nó thỏa mãn tất cả các tiên đề trong TBox và tất cả các khẳng định trong ABox, ký hiệu I ⊨KB. Bài toán thỏa được của cơ sở tri thức là bài toán quyết định xem đối với một cơ sở tri thức KB đã cho, liệu có tồn tại một mô hình I để cho I ⊨ KB hay không. Lớp độ phức tạp dữ liệu của Horn-DL được định nghĩa là lớp độ phức tạp của bài toán thỏa được của cơ sở tri thức Horn-DL theo kích thước của ABox A, giả định rằng RBox R và TBox T là cố định và A là một ABox Horn-DL rút gọn [7]. Lúc đó độ phức tạp dữ liệu của Horn-DL thuộc lớp PTime. Đánh giá Horn-DL trong quan hệ so sánh với Horn SROIQ 6 Bài toán thỏa được của cơ sở tri thức Horn-SROIQ thuộc lớp ExpTime [9], và nếu cố định TBox T thì độ phức tạp dữ liệu của Horn-SROIQ thuộc lớp PTime. 3. KẾT QUẢ VÀ THẢO LUẬN Mặc dù độ phức tạp dữ liệu của cơ sở tri thức Horn-SROIQ và Horn-DL đều thuộc lớp PTime, tuy nhiên khả năng biểu diễn tri thức của các ngôn ngữ này không hoàn toàn như nhau. 3.1. Đánh giá RBox của Horn-DL và tập các RIA của Horn-SROIQ Giả sử R’ là tập các RIA của Horn-SROIQ và R là một RBox của Horn-DL. Dựa trên cú pháp và ngữ nghĩa của Horn-SROIQ và Horn-DL, chúng ta thấy rằng mọi biểu diễn trên R’ đều có thể được biểu diễn bằng cách sử dụng các khẳng định vai trò hoặc các tiên đề bao hàm vai trò trong R. - Nếu R’ có chứa khẳng định vai trò dạng Disj( ',ss ) thì trong R chứa khẳng định vai trò Disj( ',SS ). - Nếu R’ chứa tiên đề bao hàm vai trò dạng ⊑ r thì trong R chứa S ⊑ R, đây là trường hợp đặc biệt của tiên đề bao hàm vai trò dạng S1S2Sk⊑R, với k = 1 và S là nghịch đảo của một tên vai trò đơn (tức là S Rˍ); - Nếu R’ chứa tiên đề bao hàm vai trò dạng s1 ⊑ r thì trong R chứa S ⊑ R, ở đây S là một vai trò con của R; - Nếu R’ chứa các tiên đề bao hàm vai trò dạng ⊑ r, r ⊑ r, r ⊑ r, r r ⊑ r, thì trong R chứa các tiên đề bao hàm vai trò có dạng S1S2Sk⊑R, ở đây giá trị của k ≥ 1; Như vậy ta có thể thấy rằng mọi tập chứa các RIA của Horn-SROIQ cũng có thể là một RBox trong Horn-DL, nhưng điều ngược lại không đúng. Cụ thể, nếu trong RBox của Horn-DL chứa khẳng định vai trò Irr(S) thì khả năng biểu diễn tính phản phản xạ của một vai trò trong R’ của Horn-SROIQ không thực hiện được. Ngoài ra, RBox trong Horn-DL còn có thể chứa các tiên đề bao hàm vai trò dạng ⊑ R (trường hợp đặc biệt của S1S2Sk⊑R, với k = 0), nhưng trong các RIA của Horn-SROIQ dạng này không cho phép. 3.2. Đánh giá TBox của Horn-DL và TBox của Horn-SROIQ Các tiên đề bao hàm khái niệm của Horn-SROIQ gồm các tiên đề từ dạng (VII) đến dạng (XII) trong bảng 2. Các tiên đề bao hàm TBox của Horn-DL là các tiên đề dạng C ⊑ D, trong đó C là khái niệm vế trái, D là khái niệm vế phải. Ta nhận thấy rằng mọi vế trái của quan hệ bao hàm ⊑ trong các tiên đề từ (VII) đến (XII) của Horn-SROIQ thì đều được chấp nhận bởi các khái niệm vế trái C, và vế phải của mọi quan hệ bao hàm ⊑ trong các tiên đề này cũng đều được chấp nhận bởi các khái niệm vế phải D. Tuy nhiên ngược lại không đúng. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học – ĐH Huế Tập 7, Số 1 (2017) 7 Trong Horn-SROIQ khái niệm r.Self chỉ có thể xuất hiện ở vế phải của quan hệ bao hàm ⊑ khi r là một vai trò đơn, trong khi ở Horn-DL thì chấp nhận R.Self với R là một vai trò bất kỳ. Khái niệm vế trái C có thể có dạng R.C, tuy nhiên Horn-SROIQ không cho phép cấu trúc R.C ở vế trái của tiên đề bao hàm TBox. Ngoài ra, Horn-DL còn chứa vai trò phổ quát trong khi Horn-SROIQ không chấp nhận vai trò này. Như vậy mọi TBox của Horn-SROIQ cũng có thể là một TBox trong Horn-DL, nhưng điều ngược lại không đúng. 3.3. Đánh giá ABox của Horn-DL và ABox của Horn-SROIQ Từ bảng 1 và bảng 2, ta thấy mọi ABox của Horn-SROIQ đều có thể là ABox của Horn-DL, tuy nhiên điều ngược lại không đúng. Trong ABox của Horn-DL chứa các khẳng định dạng Irr(S), s(a, b), a b nhưng ABox của Horn-SROIQ không chấp nhận các dạng này. 3.4. Bài toán minh họa và đánh giá Chúng ta mô tả quan hệ trong gia đình từ khái niệm nguyên tử là Human như sau. Đặt R = {hasChild ⊑ , ⊑ hasParent, hasChild ⊑ hasDescendant, hasChild hasChild ⊑ hasDescendant, , ⊑ }. T = {Man ⊑ Human, Woman ⊑ Human, Man ⊓ Woman ⊑ ⊥, hasChild.Human ⊑ Parent, hasChild.Parent ⊑ GrandParent, Parent ⊓ Man ⊑ Father, Parent ⊓ Woman ⊑ Mother, hasChild.Woman ⊑ ParentHasNoSon, hasChild.Man ⊑ ParentHasNoDaughter}. A = {Man(Tom), Woman(Helen), ParentHasNoDaughter(Peter), hasChild(Olga, Peter), hasChild(Peter, Bill), hasChild(Peter, Win), hasChild(Helen, Win), hasDescendant(Tom, Win), Bill Win, ¬hasChild(Tom, Helen)}. Lúc đó KB = là cơ sở tri thức Horn-DL. Ta có thể thấy rằng Tom, Peter là các thể hiện của khái niệm Father tương ứng với KB và Tom, Peter, Bill, Win là các thể hiện của khái niệm Man tương ứng với KB, đồng thời KB ⊨ hasChild(Tom, Peter). Nếu dùng các cấu trúc của Horn-SROIQ để mô tả cơ sở tri thức trên, khi đó chúng ta không thể mô tả các bao hàm khái niệm hasChild.Woman ⊑ ParentHasNoSon, hasChild.Man ⊑ ParentHasNoDaughter thì chúng ta chưa đủ cơ sở để suy ra Bill, Win là các thể hiện của Man được. Ngoài ra, cấu trúc của Horn-SROIQ cũng không thể mô tả Bill Win, ¬hasChild(Tom, Helen) và do đó các mô hình của cơ sở tri thức cũng chưa chắc thỏa hasChild(Tom, Peter). Đánh giá Horn-DL trong quan hệ so sánh với Horn SROIQ 8 4. KẾT LUẬN Bài báo đã đánh giá khả năng biểu diễn tri thức của các ngôn ngữ quy luật, từ đó kết luận được rằng Horn-DL về cơ bản hoàn toàn mạnh hơn Horn-SROIQ. Như vậy, Horn-DL là một ngôn ngữ có khả năng biểu diễn tri thức cao và việc nghiên cứu để phát triển Horn-DL là một nghiên cứu có nhiều triển vọng. Hướng phát triển trong tương lai là tìm kiếm các thuật toán hiệu quả để trả lời truy vấn trong cơ sở tri thức Horn-DL. LỜI CẢM ƠN Xin cảm ơn Trường Đại học Khoa học Huế đã cấp kinh phí cho bài báo này (đây là một phần trong đề tài Nghiên cứu Khoa học cấp cơ sở Trường). Cảm ơn Khoa Công nghệ Thông tin, các thầy cô và đồng nghiệp đã tạo mọi điều kiện để nghiên cứu này được hoàn thành. TÀI LIỆU THAM KHẢO [1]. F. Baader, S. Brandt, and C. Lutz (2005). Pushing the EL envelope, In Proceedings of IJCAI’2005, Edinburgh, pp. 364-369. [2]. F. Baader, S. Brandt, and C. Lutz (2008). Pushing the EL envelope futher, In Proceedings of OWLED 2008 DC Workshop on OWL: Experiences and Directions, Washington. [3]. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati (2007). Tractable reasoning and efficient query answering in description logics: The DL-Lite family, J. Automated Reasoning, vol. 39(3), pp. 385-429. [4]. B.N. Grosof, I. Horrocks, R. Volz, and S. Decker (2003). Description logic programs: combining logic programs with description logic, In Proc. of WWW’2003, Budapest, pp. 48-57. [5]. I. Horrocks, O. Kutz, U. Sattler (2006). The Even More Irresistible SROIQ, In Proc. KR’2006, Lake District, pp. 57-67. [6]. U. Hustadt, B. Motik, and U. Sattler (2007). Reasoning in description logics by a reduction to disjuntive Datalog, J. Automated Reasoning, vol. 39(3), pp. 351-384. [7]. L.A. Nguyen, T.B.L. Nguyen, and A. Szałas (2013). Horn-DL: An expressive Horn description logic with PTime data complexity, In Proc. of RR’2013, Mannheim, vol. 7994 of LNCS, pp. 259-246. [8]. L.A. Nguyen (2010). Horn knowledge base in regular description logics with PTime data complexity, Fundamenta Informaticae, vol. 104(4), pp. 349-384. [9]. M. Ortiz, S. Rudolph, and M. Šimkus (2010). Worst-case Optimal Reasoning for the Horn-DL Fragments of OWL 1 and 2, In Proc. KR’2010, Toronto, pp. 269-279. [10]. M. Ortiz, S. Rudolph, and M. Šimkus (2011). Query answering in the Horn fragments of the description logics SHOIQ and SROIQ, In Proceedings of IJCAI’2011, Barcelona, pp. 1039-1044. TẠP CHÍ KHOA HỌC VÀ CÔNG NGHỆ, Trường Đại học Khoa học – ĐH Huế Tập 7, Số 1 (2017) 9 EVALUATION OF HORN-DL IN COMPARISON WITH HORN SROIQ Nguyen Thi Bich Loc Department of Information Technology, Hue University College of Sciences Email: ntbichloc@hueuni.edu.vn ABSTRACT Semantic Web is a research area which has been rapidly growing in the last decades. One of the important layers of Semantic Web is Web Ontology Language (OWL), which is based on the description logics (DLs). These logics are formal languages suitable for representing terminological knowledge. Thus, effective rule languages are a research problem received much attention from researchers. In this article, we have researched and evaluated Horn-DL in comparison with languages of same complexity. Basing on the analysis we concluded that the ability of knowledge representation of Horn-DL fragments is stronger than the languages compared. Keywords: Description Logics, Horn-DL, Rule Languages, Semantic Web.
File đính kèm:
- danh_gia_horn_dl_trong_quan_he_so_sanh_voi_horn_sroiq.pdf