Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine

Wind and other renewable energies are more and more developed all over the world, especially

in countries with high wind potential such as Vietnam, to replace fossil energy, which would be

exhausted in the near future. One important characteristic of wind turbines is that at each different

wind speed, there exists a working point, represented by the rotation speed and the mechanical

power at the crankshaft of the wind turbine, at which the maximum mechanical power is obtained,

called maximum power point (MPP). Therefore, when the wind speed changes, this working point

must be changed to be able to extract the maximum power from the wind to improve the total efficiency of the wind turbine system. This, in a wind energy conversion system (WECS), is assigned to

the maximum power point tracking (MPPT) controller. In this paper, a MPPT controller is proposed,

based on an improved Perturb and Observe (P&O) algorithm, for wind turbines using permanent

magnet synchronous generator (PMSG), to maximize energy without measuring the wind speed

and power characteristics of the wind turbine. An experimental model is also designed and tested

in laboratory conditions, in which two coefficients K1 and K2 are used in turn when the working

point is far or close to the maximum power point. The experimental results show that the proposed

MPPT controller allows the extraction of maximum power from wind turbines under variable wind

speed without determining the wind speed and characteristics of the wind turbine system.

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 1

Trang 1

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 2

Trang 2

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 3

Trang 3

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 4

Trang 4

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 5

Trang 5

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 6

Trang 6

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine trang 7

Trang 7

pdf 7 trang duykhanh 3120
Bạn đang xem tài liệu "Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine

Design of a MPPT controller for permanent magnet synchronous generator driven wind turbine
wopt which made a maximum power re-
covered from the wind (Figure 2)9.
Figure 2: Mechanic power vs. rotor speed.
Electrical systemmodeling
The WECS incorporated in our scheme consists of a
wind turbine coupled to a PMSG. Since the PMSG
produces variable amplitude - variable frequency volt-
age, additional power electronic devices are required
to meet power quality demand. A three-phase diode
bridge rectifier is used for the AC/DC conversion.
A boost converter (DC/DC) is used to vary the ro-
tor speed by adjusting the converter’s duty cycle (Fig-
ure 3).
Figure 3: PMSG driven wind turbine configura-
tion.
The dynamic model of PMSG can be represented in
the Park’s system using these equations10:
Vd =Rsid Lddid=dt+wLqiq (7)
252
Science & Technology Development Journal – Engineering and Technology, 2(4):251-257
Vq =RsiqLqdiq=dtwLd id +wlm (8)
The expression of electromagnetic torque in the rotor
is given by:
Te = 3=2p

Ld Lq

iqid lmiq

(9)
we = w R (10)
where p is the number of pole pair, lm is themagnetic
flux, Ld is the direct axis inductance, Lq is the induc-
tance in quadrature, Rs is the stator resistance and w
is the electrical angular frequency.
If the rotor is cylindrical, Ld  Lq  Ls so:
Te =1:5piqlm (11)
Relationship between mechanical torque and electro-
magnetic torque in a wind turbine:
TmTe = J dw=dt (12)
where J is the inertia of the wind turbine.
In PMSG wind generation systems, the output cur-
rent and voltage are proportional to the electromag-
netic torque and rotor speed, respectively 9:
Te = kT Ia (13)
E = kew (14)
Where Ia is the stator current. On the other hand:
E2 =V 2WT +(IaLsw)
2 (15)
VWT is the generator phase voltage and Ls is the in-
ductance of the generator.
From (14), (15) we have:
w µVWT ! dw=dt µ dVWP=dt (16)
Thus, in a variable speed PMSG driven wind turbine,
we can vary the output voltage VWT of the generator
(by adjusting the duty cycle of the boots converter) to
change the rotor speedw . If we can control our system
to work at the optimal rotor speed wopt , maximum
power will be extracted from the wind turbine.
Figure 4: Proposed algorithm.
PROPOSED ALGORITHM
Conventional P&OMPPT controller
In the field of MPPT for wind energy, the P&O al-
gorithm is a very popular method because of its sim-
plicity and easy implementation. The main idea is
the perturbation of rotor speed and takes reaction to
reach the MPP. If the variation of the rotor speed in-
creases the power extracted, the next variation will
be kept in that direction. Conversely, if the variation
of the rotor speed decreases the power extracted, the
next variation will be reversed10.
However, this method has its own negative points.
The response to wind speed change is extremely slow,
especially for large inertia wind turbines11,12. Rapidly
fluctuating character of wind supply makes the sit-
uation even worse. Oscillation around the MPP is
also another inevitable disadvantage. All these draw-
backs can significantly lower MPPT efficiency and
may cause oscillation in the system13,14.
ProposedMPPT controller
The proposed algorithm is based on the basic prin-
ciples of the P&O algorithm, by adapting the value
of perturbation step to achieve the faster convergence
rate. Variation of the next step is proportional with
the derivative of power and voltage (DD=k*DP/DV).
Around the maximum point, when DP varies near
zero, we will stop the perturbation. In addition, when
the wind speed varies, based on the rise in current or
253
Science & Technology Development Journal – Engineering and Technology, 2(4):251-257
voltage, we can predict the new position of the MPP.
That means, when wind speed increase, the newMPP
will move to the left of the power curve, and when
wind speed decrease, the new MPP will move to the
right.
The flow chart of the proposed algorithm is given in
Figure 4. This algorithm needs to determine the two
experimental constant k1 and k2. When the operat-
ing point is far away from MPP, we should use a big
variation to reach the MPP more quickly. When our
system is working in theMPP andwind speed change,
we will use smaller variation to keep the system sta-
ble. Thus k1 > k2 and their value are proportional to
the turbine capacity. The k1 and k2 are determined
experimentally on physical model shown in Figure 5.
The experimental parameters of our proposed con-
troller are given in Table 1 .
Table 1: Experimental parameters
Parameter Value
DPmin 0.4
DPmax 1.7
xl0 10
k1 0.7
k2 0.35
EXPERIMENTAL, RESULTS AND
DISCUSSION
Tested system
Figure 5: The wind turbine emulator.
The wind turbine emulator includes a tunnel and a
three-phase motor controlled by an inverter, a wind
speed gauge, a 6-bladed turbine system and a PMSG.
The wind speed is varied by changing the three-phase
Figure 6: The three-phase motor for wind speed
simulator.
Figure 7: Controller for wind speed simulator.
Figure 8: a) Measured power-speed curves. b)
Power according to wind speed and load.
254
Science & Technology Development Journal – Engineering and Technology, 2(4):251-257
motor speed through the inverter. The output volt-
age is rectified by a three-phase diode bridge. These
devices were produced by the DE LORENZO group
(Italy) in Figures 5, 6 and 7.
To determine the maximum power point for each
wind speed of a wind turbine system, an experiment
is arranged as shown in Figure 8a and the results are
shown in Figure 8b.
Results and discussion
At 12.5m/swind speed, we tested our system in 2 con-
ditions: without MPPT controller (Figures 9 and 11)
and with MPPT controller (Figures 10 and 12). We
also use a battery and then a 60W-220V lamp as load,
we obtained the following result:
Figure 9: ResultswithoutMPPT controller at 12.5
m/s wind speed with battery load.
Figure 10: Results with MPPT controller at 12.5
m/s wind speed with battery load.
With the battery load, when the MPPT is not acti-
vated, the charging power is 11.4W, and when the
MPPT controller is activated, the charging capacity
reaches 15.6W. With the 60W-220V lamp loading
without MPPT system, the measured power is 3.9W,
after activating the MPPT controller the measured
power is now 15.6 W.
Results obtained at different wind speeds with 60W-
220V are given in Table 2.
Figure 11: Results without MPPT controller at
12.5 m/s wind speed with 60W-220V lamp load.
Figure 12: Results without MPPT controller at
12.5 m/s wind speed with 60W-220V lamp load.
Table 2 shows the maximum power supplied by the
MPPT unit for lamps similar to the resistor survey re-
sults in Figure 8. We can see that with our proposed
MPPT controller, when wind speed and load change,
the power extracted from our WECS is always maxi-
mized.
Table 3 presents the comparison of the time to reach
the MPP when experimenting for wind speed from
0m/s to 10m/s, then down to 8m/s and then up to
10m/s.
Table 3: Compare the time to get themaximumpower
Time to get maximum power
V(m/s) 0! 10 10! 8 8! 10
14 20s 7s-8s 13s-14s
Proposed
algorithm
12s 7s-8s 7s-8s
TheP&O algorithm of Badreddine et al.14 takes more
than 20 seconds to achieve MPP while the proposed
algorithm only needs 12 seconds in the inception
phase. When the wind speed increases from 8m/s to
10m/s, the time to get the MPP of the proposed algo-
rithm is also faster than that in Badreddine et al.14.
255
Science & Technology Development Journal – Engineering and Technology, 2(4):251-257
Table 2: Summary of experimental results
Wind
(m/s)
Without MPPT With MPPT Pmax(W)at
Figure 8
U(V) I(A) P(W) U(V) I(A) P(W)
9.4 22.4 0.11 2.46 49.0 0.15 6.86 6.88
10.0 24.9 0.11 2.74 53.0 0.14 7.42 7.52
10.6 26.5 0.11 2.92 61.0 0.15 9.15 9.28
11.7 29.9 0.11 3.29 75.0 0.16 12.0 12.00
12.5 32.5 0.12 3.90 70.8 0.22 15.6 15.66
CONCLUSION
In this paper, an adaptive perturbation MPPT con-
troller for WECS is designed and tested in labora-
tory condition. Without information of wind speed,
generator’s power characteristic or load condition,
control signals were generated to extract maximum
power from the wind. Experimental results show
that our proposed controller works well to achieve
the MPP of the wind turbine system at various wind
speeds and load conditions.
ABBREVIATION
MPP:maximum power point
WECS: wind energy conversion system
MPPT:maximum power point tracking
P&O: Perturb and Observe
PMSG: permanent magnet synchronous generator
AC: alternating current
DC: direct current
CONFLICT OF INTEREST
In this paper, there is no conflict of interest.
AUTHORS’ CONTRIBUTION
Truong Viet Anh, Vo Hoai Thuong have contributed
in conducting experiments. Huynh Quang Minh has
tested experiments. Truong Viet Anh, Huynh Quang
Minh wrote the manuscript.
REFERENCES
1. Abdullah MA, Yatim AHM, Tan CW, Saidur R. A review
of maximum power point tracking algorithms for wind en-
ergy systems. Renewable and Sustainable Energy Reviews.
2012;16:3220–3227.
2. Trinh QN, Lee HH. Fuzzy logic controller for maximum power
tracking in PMSG-based wind power systems. Advanced In-
telligent Computing Theories and Applications with Aspects
of Artificial Intelligence. 2010;p. 543–553.
3. Koutroulis E, Kalaitzakis K. Design of amaximumpower track-
ing system for wind-energy-conversion applications. IEEE
Transactions on Industrial Electronics. April 2006;53(2):486–
494.
4. Melício R, Mendes VMF, Catalão JPS. A Pitch Control Malfunc-
tion Analysis for Wind Turbines with Permanent Magnet Syn-
chronous Generator and Full-power Converters: Proportional
Integral Versus Fractional-order Controllers. Electric Power
Compoments and Systems. 2010;38(4):387–406.
5. Memije D, Rodríguez JJ, Carranza O, Ortega R. Improving the
performance of MPPT in a wind generation system using a
wind speed estimation by Newton Raphson. IEEE Interna-
tional AutumnMeeting on Power, Electronics and Computing
(ROPEC). 2016;.
6. Zou Y, He J. Comprehensive modeling, simulation and exper-
imental validation of Permanent Magnet Synchronous gener-
ator wind power system. IEEE/IAS 52nd Industrial and Com-
mercial Power Systems Technical Conference (I&CPS). 2016;.
7. Saad L, Hicham H, Khalid F. Optimal tracking, modeling and
control of aerogenerator based on PMSG driven by wind tur-
bine. IEEE International Conference on Renewable Energy Re-
search and Applications (ICRERA). 2016;.
8. Linus RM, Damodharan P. Maximum power point tracking
method using a modified perturb and observe algorithm for
grid connected wind energy conversion systems. IET Renew-
able Power Generation. 2015;9(6):682–689.
9. Huynh Q, Nollet F, Essounbouli N, Hamzaoui A. Fuzzy control
of variable speedwind turbine using permanentmagnet syn-
chronous machine for stand-alone system. In: Sustainability
in Energy and Buildings: Proceedings of the 3rd International
Conference in Sustainability in Energy and Buildings (SEB 11).
vol. 12. Springer Verlag; 2012. p. 31.
10. Li L, Han B, Ren Y, Brindley J, Jiang L. An improved hybrid hill
climb searching control for MPPT of wind power generation
systems under fast varying wind speed. International Confer-
ence on Renewable Power Generation. 2015;p. 1–6.
11. Nayanar V, Kumaresan N, Gounden NA. A Single-Sensor-
Based MPPT Controller for Wind-Driven Induction Generators
SupplyingDCMicrogrid. IEEE Transactions onPower Electron-
ics. Feb 2016;31(2):1161–1172.
12. Yang Z, Yin M, Xu Y, Zhang Z, Zou Y, Dong ZY. A Multi-Point
Method Considering the Maximum Power Point Tracking Dy-
namic Process for Aerodynamic Optimization of Variable-
Speed Wind Turbine Blades. Energies. May 2016;9(6):425.
13. Lan F, Tao L, Li J, YaoZ. An improved variable stephill-climbing
searching algorithm for tracking maximum power point of
wind power system. China International Conference on Elec-
tricity Distribution (CICED). Aug 2016;.
14. Lahfaoui B, Zouggar S, Mohammed B, Elhafyani ML. Real time
study of P&O MPPT control for small wind PMSG turbine sys-
tems using Arduino microcontroller. In: 8th International
Conference on Sustainability in Energy and Buildings, SEB-16,
11-13 September 2016, Turin, ITALY. vol. 111. Energy Procedia;
2017. p. 1000–1009.
256
Tạp chí Phát triển Khoa học và Công nghệ – Kĩ thuật và Công nghệ, 2(4):251-257
Open Access Full Text Article Bài nghiên cứu
1Trường ĐH Sư phạm Kỹ thuật
TP.HCM, Việt Nam
2Trường ĐH Bách khoa, ĐHQG-HCM,
Việt Nam
3Trường CĐ nghề Tiền Giang, Việt Nam
Liên hệ
Trương Việt Anh, Trường ĐH Sư phạm Kỹ
thuật TP.HCM, Việt Nam
Email: anhtv@hcmute.edu.vn
Lịch sử
 Ngày nhận: 08-01-2019
 Ngày chấp nhận: 28-9-2019
 Ngày đăng: 28-12-2019
DOI : 10.32508/stdjet.v2i4.440
Bản quyền
© ĐHQG Tp.HCM. Đây là bài báo công bố
mở được phát hành theo các điều khoản của
the Creative Commons Attribution 4.0
International license.
Thiết kế bộ điều khiểnMPPT cho tuabin gió dùngmáy phát đồng
bộ nam châm vĩnh cửu
Trương Việt Anh1,*, Huỳnh QuangMinh2, Võ Hoài Thương3
Use your smartphone to scan this
QR code and download this article
TÓM TẮT
Năng lượng gió và các năng lượng tái tạo khác ngày càng được phát triển trên toàn thế giới để thay
thế dần năng lượng hóa thạch với tốc độ ngày càng nhanh chóng, đặc biệt tại các nước có tiểm
năng gió lớn như Việt Nam. Một đặc điểm của các turbine gió là ứng với mỗi tốc độ gió khác nhau,
sẽ tồn tại một điểm làm việc được thể hiện bởi tốc độ quay của turbine gió và moment đầu trục
turbine (công suất cơ học) hay dòng điện và điện áp (công suất điện) mà ở đó công suất thu được
là lớn nhất. Vì vậy, khi tốc độ gió thay đổi, điểm làm việc này sẽ phải thay đổi để có thể trích xuất
được công suất lớn nhất nhằm nâng cao hiệu suất sử dụng của turbine gió. Việc này, trongmột hệ
thống turbine gió được giao cho bộ dò tìm công suất cực đại (MPPT) trong hệ thống chuyển đổi
năng lượng gió sang năng lượng điện. Trong bài báo này, bộ điều khiển MPPT dựa trên giải thuật
nhiễu và quan sát cải tiến được đề xuất cho tuabin gió sử dụngmáy phát đồng bộ nam châm vĩnh
cửu thu được năng lượng tối đa mà không cần đo tốc độ gió và đặc tuyến công suất của tuabine
gió. Mô hình vật lý được thiết kế và thử nghiệm trong điều kiện phòng thí nghiệm, giải thuật sử
dụng P&O cải tiến với 2 hệ số K1 và K2 được dùng lần lượt khi điểm làm việc ở xa và gần điểm công
suất cực đại. Kết quả đượcmô tả quamột thí nghiệm trênmô hình vật lý, cho phép trích xuất được
công suất điện từ turbine gió lớn nhất trong các điều kiện gió thay đổi mà không cần xác định tốc
độ gió và đặc tính của hệ thống turbine gió.
Từ khoá: tua bin gió, máy phát đồng bộ nam châm vĩnh cửu, dò tìm điểm công suất cực đại,
nhiễu loạn và quan sát, bộ chuyển đổi AC/DC, bộ chuyển đổi DC/DC
Trích dẫn bài báo này: Việt Anh T, Quang Minh H, Hoài Thương V. Thiết kế bộ điều khiển MPPT cho
tuabin gió dùngmáy phát đồng bộ nam châm vĩnh cửu. Sci. Tech. Dev. J. - Eng. Tech.; 2(4):251-257.
257

File đính kèm:

  • pdfdesign_of_a_mppt_controller_for_permanent_magnet_synchronous.pdf