Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha

Signal and Systems

™ A signal is defined as any physical quantity that varies with time,

space or an other independent ariables , or any other independent variables.

‰ Speech, image, video and electrocardiogram signals are information-bearing

signals.

™ Mathematically, we describe a signal as a function of one or more

independent variables.

‰ Examples: x( ) 110sin(2 t = π 50 ) t

I x y ( , ) 3 = x + 2xy +10y2

™ A system is defined as a physical device that performs any operation

on a signal.

‰ A filter is used to reduce noise and interference corrupting a desired

information-bearing signa

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 1

Trang 1

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 2

Trang 2

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 3

Trang 3

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 4

Trang 4

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 5

Trang 5

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 6

Trang 6

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 7

Trang 7

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 8

Trang 8

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 9

Trang 9

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 18 trang duykhanh 10920
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha

Bài giảng Xử lý tín hiệu số - Introduction - Hà Hoàng Kha
Chapter 0
Introduction
Click to edit Master subtitle styleHa Hoang Kha, Ph.D.
Ho Chi Minh City University of Technology
Email: hhkha@hcmut.edu.vn
1. Signal and Systems
™ A signal is defined as any physical quantity that varies with time, 
space or an other independent ariables, y v . 
‰ Speech, image, video and electrocardiogram signals are information-bearing 
signals.
™Mathematically, we describe a signal as a function of one or more 
independent variables.
‰ Examples: ( ) 110sin(2 50 )x t tπ= ⋅
2( , ) 3 2 10I x y x xy y= + +
™ A system is defined as a physical device that performs any operation 
on a signal.
‰ A filter is used to reduce noise and interference corrupting a desired 
information-bearing signal.
2 IntroductionHa H. Kha
1. Signal and Systems
™ Signal processing is to pass a signal 
h ht roug a system. 
™ A digital system can be 
implemented as a digital computer 
or digital hardware (logic circuits).
3 IntroductionHa H. Kha
2. Classification of Signal
Multichannels and Multidimensional signals
™ Signals which are generated by multiple sources or multiple sensors 
can be represented in a vector form. Such a vector of signals is 
referred to as a m ltichannel signals u 
‰ Ex: 3-lead and 12-lead electrocardiograms (ECG) are often used in practice, 
which results in 3-channel and 12-channel signals . 
™ A signal is called M-dimensional if its value is a function of M 
d d bin epen ent varia le 
‰ Picture: the intensity or brightness I(x,y) at each point is a function of 2 
independent variables 
‰ Color TV picture is 3-dimensional signals I(x,y,t)
4 IntroductionHa H. Kha
2. Classification of Signal
Continous-time versus discrete-time signal
™ Signals can be classified into four different categories depending on 
the characteristics of the time variable and the values they take.
Time 
Amplitue
Continuous Discrete
(t) ( )
Continuous t
x
n
x n
Analog signal Discrete time signal
Discrete
xQ(n)
101110
111xQ(t)
Quantized signal Digital signal
n
000001
010011
100
t
5 IntroductionHa H. Kha
3. Basic elements of a DSP system
™Most of the signals encountered in science and engineering are 
analog in nat re To perform the processing digitall there is a need u . y, 
for an interface between the analog signal and the digital processor
Fig: Analog signal processing 
Fi Di i l i l ig: g ta s gna process ng 
6 IntroductionHa H. Kha
4. DSP applications-Communications
™ Telephony: transmission of information in 
digital form via telephone lines, modem 
technology, mobile phone.
™ Encoding and decoding of the 
information sent over physical 
h nn l (t ptimizc a e s o o e 
transmission, to detect or 
correct errors in transmission) 
7 IntroductionHa H. Kha
4. DSP applications-Radar
Radar and sonar:
™ Target detection: 
position and 
velocity estimation
™ Tracking 
8 IntroductionHa H. Kha
4. DSP applications-Biomedical
™ Analysis of biomedical signals, diagnosis, patient monotoring, 
pre enti e health care artificial organsv v , .
™ Examples: 
™ l di ( CG) i l idE ectrocar ogram E s gna prov es 
information about the condition of the 
patient’s heart .
™ Electroencephhalogram (EEG) signal 
pro ides information abo t thev u 
activity of the brain.
9 IntroductionHa H. Kha
4. DSP applications-Speech
™Noise reduction: reducing 
backgro nd noise in the seq enceu u 
produced by a sensing device (a 
microphone).
™ Speech recognition: differentiating 
between various speech sounds
™ Synthesis of artificial speech : 
text to speech systems
10 IntroductionHa H. Kha
4. DSP applications-Image Processing
™ Content based image retrieval-
bro sing searching and retrie ingw , v 
images from database.
™ Image enhancement
™ Compression: reducing the 
redundancy in the image data to 
optimize transmission/storage
11 IntroductionHa H. Kha
4. DSP applications-Multimedia
™ Generation storage and transmission 
of so nd still images motion u , , 
pictures.
™ Digital TV
™ Video conference
12 IntroductionHa H. Kha
The Journey
“ L i di i l i l i i hi earn ng g ta s gna process ng s not somet ng 
you accomplish; it’s a journey you take”.
R.G. Lyons, Understanding Digital Signal Processing
13 IntroductionHa H. Kha
5. Advantages of digital 
over analog signal processing
™ A digital programmable system allows flexibility in reconfiguring the 
DSP operations simply by changing the program.
™ A digital system provides much better control of accuracy 
requirements.
™ Digital signals are easily stored.
™ DSP methods allow for implementation of more sophisticated signal 
processing algorithms.
™ Li it ti P ti l li it ti f DSP th ti tim a on: rac ca m a ons o are e quan za on errors 
and the speed of A/D converters and digital signal processors -> not 
suitable for analog signals with large bandwidths. 
14 IntroductionHa H. Kha
Course overview
™ Introduction to Digital Signal Processing (3 periods)
™ Sampling and reconstruction, quantization (6 periods)
™ Analysis of linear time invariant systems (LTI)(3 periods)
™ Finite Impulse Response (FIR) of LTI systems (3 periods)
™ Z-transform and its applications to the analysis of linear systems (6 
Mid-term Exam
periods)
™ Fourier transform & FFT Algorithm (9 periods)
™ Digital filter realization(3 periods)
™ FIR and IIR filter designs (9 periods)
Final Exam 
15 IntroductionHa H. Kha
References
™ T t b kex oo s:
[1]  S. J. Orfanidis, Introduction to Signal Processing, Prentice –Hall 
Publisher 2010. 
[2]  J. Proakis, D. Manolakis, Introduction to Digital Signal 
Processing, Macmillan Publishing Company, 1989.
™ Reference books:
[3] V K Ingle J Proakis Digital Signal Processing Using Matlab  .  .  ,  .  ,          , 
Cengage Learning, 3 Edt, 2011. 
16 IntroductionHa H. Kha
Learning outcomes
™ Understand how to convert the analog to digital signal 
™ Have a thorough grasp of signal processing in linear time invariant                  ‐  
systems.
™ Understand the z‐transform and Fourier transforms in analyzing 
the signal and systems      .
™ Be able to design and implement FIR and IIR filters.
17 IntroductionHa H. Kha
Assessment
™ Mid‐term exam:  30%
™ Final exam:  70%
™ Bonus:  0.5 mark/solving a problem in the class.
18 IntroductionHa H. Kha

File đính kèm:

  • pdfbai_giang_xu_ly_tin_hieu_so_introduction_ha_hoang_kha.pdf