Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha
Example
Determine the z-transform of the following finite-duration signals
a) x1(n)=[1, 2, 5, 7, 0, 1]
b) x2(n)=x1(n-2)
c) x3(n)=x1(n+2)
d) x4(n)=δ(n)
e) x5(n)=δ(n-k) k>0 , k>0
f) x6(n)=δ(n+k), k>0
Determine the z-transform of the signal
a) ( )=(0 5) x(n)=(0.5)nu( ) n)
b) x(n)=-(0.5)nu(-n-
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha
Chapter 5 z-Transform Click to edit Master subtitle styleHa Hoang Kha, Ph.D. Ho Chi Minh City University of Technology Email: hhkha@hcmut.edu.vn The z-transform is a tool for analysis, design and implementation of discrete time signals and LTI systems- . Convolution in time-domain ⇔ multiplication in the z-domain Ha H. Kha 2 z-Transforms Content 1 t f. z- rans orm 2. Properties of the z-transform 3. Causality and Stability 4. Inverse z-transform 3 Discrete-Time SystemsHa H. Kha 1. The z-transform The z-transform of a discrete-time signal x(n) is defined as the power series: "" ++++−+−== −−− ∞ −∞= −∑ 212 )2()1()0()1()2()()( zxzxxzxzxznxzX n n The region of convergence (ROC) of X(z) is the set of all values of f hi h X( ) i fi i lz or w c z atta ns a n te va ue. })()(|C{ ∑∞ − ∞≠=∈= nznxzXzROC −∞=n The z-transform of impulse response h(n) is called the transform function of the filter: ∑∞ ∞ −= n nznhzH )()( 4 z-Transforms −= Ha H. Kha Example Determine the z-transform of the following finite-duration signals a) x1(n)=[1, 2, 5, 7, 0, 1] b) x2(n)=x1(n-2) c) x3(n)=x1(n+2) d) x4(n)=δ(n) e) x (n)=δ(n k) k>0 5 - , f) x6(n)=δ(n+k), k>0 5 z-TransformsHa H. Kha Example Determine the z-transform of the signal ) ( )=(0 5)n ( )a x n . u n b) x(n)=-(0.5)nu(-n-1) 6 z-TransformsHa H. Kha z-transform and ROC It is possible for two different signal x(n) to have the same z- transform. Such signals can be distinguished in the z-domain by their region of convergence. z-transforms: and their ROCs: ROC of a causal signal is the t i f i l ROC of an anticausal signal is the interior of a circle 7 z-Transforms ex er or o a c rc e. . Ha H. Kha Example Determine the z-transform of the signal )1()()( −−+= nubnuanx nn The ROC of two-sided signal is a ring (annular region). 8 z-TransformsHa H. Kha 2. Properties of the z-transform Linearity: 111 ROCwith)()( zXnx z⎯→←if 222 ROCwith)()( zXnx z⎯→←and then 212121 ROCROCROCwith)()()()()()( ∩=+=⎯→←+= zXzXzXnxnxnx z Example: Determine the z-transform and ROC of the signals a) x(n)=[3(2)n-4(3)n]u(n) b) x(n)=cos(w0 t)u(n) c) x(n)=sin(w0 t)u(n) 9 z-TransformsHa H. Kha 2. Properties of the z-transform Time shifting: )()( zXnx z⎯→←if )()( zXzDnx Dz −⎯→←−then The ROC of is the same as that of X(z) except for z=0 if)(zXz D− D>0 and z=∞ if D<0. Example: Determine the z transform of the signal x(n)=2nu(n 1) - - . Scaling in the z-domain: 21 || :ROC)()( rzrzXnx z ≤≤⎯→←if 21 1 ||||||:ROC)()( razrazaXnxa zn ≤≤⎯→← −then for any constant a, real or complex Example: Determine the z-transform of the signal x(n)=ancos(w0n)u(n) 10 z-Transforms . Ha H. Kha 2. Properties of the z-transform Time reversal: if 21 || :ROC)()( rzrzXnx z ≤≤⎯→← then 12 1 1|| r 1 :ROC)()( r zzXnx z ≤≤⎯→←− − Example: Determine the z-transform of the signal x(n)=u(-n). Convolution of two sequence: if and )()( 11 zXnx z⎯→← )()( 22 zXnx z⎯→← )()()()()()( 2121 zXzXzXnxnxnx z =⎯→←∗=then the ROC is, at least, the intersection of that for X1(z) and X2(z). Example: Compute the convolution of x=[1 1 3 0 2 1] and h=[1, -2, 1] ? 11 z-TransformsHa H. Kha 2. Properties of the z-transform Differentiation in the z-domain if )()( zXnx z⎯→← then dz zdXznnx z )()( −⎯→← Example: Determine the z transform of the signal x(n)=nanu(n) the ROCs of both are the same. - . 12 z-TransformsHa H. Kha 3. Causality and stability A causal signal of the form "++= )()()( nupAnupAnx nn will have z-transform 2211 ||max||ROC)( 21 AAX >++ 11 12 1 1 ii pz zpzp z −−= −− " the ROC of causal signals are outside of the circle. A anticausal signal of the form "+−−−−−−= )1()1()( 2211 nupAnupAnx nn ||min||ROC)( 21 ipz AAzX <++= " 11 12 1 1 izpzp −− −− the ROC of causal signals are inside of the circle. 13 z-TransformsHa H. Kha 3. Causality and stability Mixed signals have ROCs that are the annular region between two circles. It can be shown that a necessary and sufficient condition for the stability of a signal x(n) is that its ROC contains the unit circle. 14 z-TransformsHa H. Kha 4. Inverse z-transform ROC ),()( transformz zXnx ⎯⎯⎯ →⎯ − )(ROC ),( transform-zinverse nxzX ⎯⎯⎯⎯⎯ →⎯ ROC),()( zXnx z⎯→← In inverting a z-transform, it is convenient to break it into its partial fraction (PF) expression form, i.e., into a sum of individual pole terms whose inverse z transforms are known. 1 Note that with we have ⎧ > i l )( l||||ROCif)(n 1-az-1 )( =zX ⎩⎨ <−−− = signals) l(anticausa |a||z| ROC if )1( s gna scausa az )( nua nua nx n 15 z-TransformsHa H. Kha Partial fraction expression method In general, the z-transform is of the form N N zbzbbzNzX −− +++== " 1 10)()( The poles are defined as the solutions of D(z)=0. There will be M poles say at p p p Then we can write M M zazazD −− ++ "101)( , 1, 2,, M . , )1()1)(1()( 112 1 1 −−− −−−= zpzpzpzD M" If N < M and all M poles are single poles. where 16 z-TransformsHa H. Kha Exampleod Compute all possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0 Æ p1=0.5, p2=-0.5 - We have N=1 and M=2, i.e., N < M. Thus, we can write where 17 z-TransformsHa H. Kha Exampleod 18 z-TransformsHa H. Kha Partial fraction expression method If N=M Wh d f i 1 Mere an or = ,, If N> M 19 z-TransformsHa H. Kha Exampleod Compute all possible inverse z-transform of Solution: - Find the poles: 1-0.25z-2 =0 Æ p1=0.5, p2=-0.5 - We have N=2 and M=2, i.e., N = M. Thus, we can write where 20 z-TransformsHa H. Kha Exampleod 21 z-TransformsHa H. Kha Exampleod Determine the causal inverse z-transform of Solution: h 5 d 2 i Th h di id h- We ave N= an M= , .e., N > M. us, we ave to v e t e denominator into the numerator, giving 22 z-TransformsHa H. Kha Partial fraction expression method Complex-valued poles: since D(z) have real-valued coefficients, the complex-valued poles of X(z) must come in complex-conjugate pairs C id i h l hons er ng t e causa case, we ave Writing A1 and p1 in their polar form, say, with B1 and R1 > 0, and thus, we have A lt th i l i ti d i is a resu , e s gna n me- oma n s 23 z-TransformsHa H. Kha Exampleod Determine the causal inverse z-transform of Solution: 24 z-TransformsHa H. Kha Exampleod 25 z-TransformsHa H. Kha Homework Problems: 5.2, 5.3, 5.4, 5.6, 5.6, 5.8, 5.16 26 z-TransformsHa H. Kha
File đính kèm:
- bai_giang_xu_ly_tin_hieu_so_chuong_5_z_transform_ha_hoang_kh.pdf