Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha

Example

™ Determine the z-transform of the following finite-duration signals

a) x1(n)=[1, 2, 5, 7, 0, 1]

b) x2(n)=x1(n-2)

c) x3(n)=x1(n+2)

d) x4(n)=δ(n)

e) x5(n)=δ(n-k) k>0 , k>0

f) x6(n)=δ(n+k), k>0

™ Determine the z-transform of the signal

a) ( )=(0 5) x(n)=(0.5)nu( ) n)

b) x(n)=-(0.5)nu(-n-

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 1

Trang 1

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 2

Trang 2

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 3

Trang 3

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 4

Trang 4

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 5

Trang 5

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 6

Trang 6

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 7

Trang 7

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 8

Trang 8

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 9

Trang 9

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 26 trang duykhanh 15020
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha

Bài giảng Xử lý tín hiệu số - Chương 5: z-Transform - Hà Hoàng Kha
Chapter 5
z-Transform
Click to edit Master subtitle styleHa Hoang Kha, Ph.D.
Ho Chi Minh City University of Technology
Email: hhkha@hcmut.edu.vn
™ The z-transform is a tool for analysis, design and implementation of 
discrete time signals and LTI systems- .
™ Convolution in time-domain ⇔ multiplication in the z-domain
Ha H. Kha 2 z-Transforms
Content
1 t f. z- rans orm
2. Properties of the z-transform
3. Causality and Stability
4. Inverse z-transform
3 Discrete-Time SystemsHa H. Kha
1. The z-transform
™ The z-transform of a discrete-time signal x(n) is defined as the power 
series:
"" ++++−+−== −−−
∞
−∞=
−∑ 212 )2()1()0()1()2()()( zxzxxzxzxznxzX
n
n
™ The region of convergence (ROC) of X(z) is the set of all values of 
f hi h X( ) i fi i lz or w c z atta ns a n te va ue.
})()(|C{ ∑∞ − ∞≠=∈= nznxzXzROC
−∞=n
™ The z-transform of impulse response h(n) is called the transform 
function of the filter: 
∑∞
∞
−=
n
nznhzH )()(
4 z-Transforms
−=
Ha H. Kha
Example
™ Determine the z-transform of the following finite-duration signals
a) x1(n)=[1, 2, 5, 7, 0, 1]
b) x2(n)=x1(n-2)
c) x3(n)=x1(n+2)
d) x4(n)=δ(n)
e) x (n)=δ(n k) k>0 5 - , 
f) x6(n)=δ(n+k), k>0
5 z-TransformsHa H. Kha
Example
™ Determine the z-transform of the signal
) ( )=(0 5)n ( )a x n . u n
b) x(n)=-(0.5)nu(-n-1)
6 z-TransformsHa H. Kha
z-transform and ROC
™ It is possible for two different signal x(n) to have the same z-
transform. Such signals can be distinguished in the z-domain by their 
region of convergence.
™ z-transforms:
and their ROCs:
ROC of a causal signal is the 
t i f i l
ROC of an anticausal signal 
is the interior of a circle
7 z-Transforms
ex er or o a c rc e. .
Ha H. Kha
Example
™ Determine the z-transform of the signal
)1()()( −−+= nubnuanx nn
™ The ROC of two-sided signal is a ring (annular region).
8 z-TransformsHa H. Kha
2. Properties of the z-transform
™ Linearity:
111 ROCwith)()( zXnx
z⎯→←if
222 ROCwith)()( zXnx
z⎯→←and
then 
212121 ROCROCROCwith)()()()()()( ∩=+=⎯→←+= zXzXzXnxnxnx z
™ Example: Determine the z-transform and ROC of the signals
a) x(n)=[3(2)n-4(3)n]u(n)
b) x(n)=cos(w0 t)u(n)
c) x(n)=sin(w0 t)u(n)
9 z-TransformsHa H. Kha
2. Properties of the z-transform
™ Time shifting:
)()( zXnx z⎯→←if
)()( zXzDnx Dz −⎯→←−then 
™ The ROC of is the same as that of X(z) except for z=0 if)(zXz D− 
D>0 and z=∞ if D<0.
Example: Determine the z transform of the signal x(n)=2nu(n 1) - - .
™ Scaling in the z-domain:
21 || :ROC)()( rzrzXnx
z ≤≤⎯→←if
21
1 ||||||:ROC)()( razrazaXnxa zn ≤≤⎯→← −then 
for any constant a, real or complex
Example: Determine the z-transform of the signal x(n)=ancos(w0n)u(n)
10 z-Transforms
 .
Ha H. Kha
2. Properties of the z-transform
™ Time reversal:
if 21 || :ROC)()( rzrzXnx z ≤≤⎯→←
then 
12
1 1||
r
1 :ROC)()(
r
zzXnx z ≤≤⎯→←− −
Example: Determine the z-transform of the signal x(n)=u(-n).
™ Convolution of two sequence:
if and )()( 11 zXnx z⎯→← )()( 22 zXnx z⎯→←
)()()()()()( 2121 zXzXzXnxnxnx
z =⎯→←∗=then 
the ROC is, at least, the intersection of that for X1(z) and X2(z).
Example: Compute the convolution of x=[1 1 3 0 2 1] and h=[1, -2, 1] ?
11 z-TransformsHa H. Kha
2. Properties of the z-transform
™Differentiation in the z-domain
if )()( zXnx z⎯→←
then 
dz
zdXznnx z )()( −⎯→←
Example: Determine the z transform of the signal x(n)=nanu(n)
the ROCs of both are the same.
 - .
12 z-TransformsHa H. Kha
3. Causality and stability
™ A causal signal of the form
"++= )()()( nupAnupAnx nn
will have z-transform
2211
||max||ROC)( 21 AAX >++
11 12
1
1
ii
pz
zpzp
z −−= −− "
the ROC of causal signals are outside of the circle.
™ A anticausal signal of the form
"+−−−−−−= )1()1()( 2211 nupAnupAnx nn
||min||ROC)( 21 ipz
AAzX <++= "
11 12
1
1
izpzp −− −−
the ROC of causal signals are inside of the circle.
13 z-TransformsHa H. Kha
3. Causality and stability
™Mixed signals have ROCs that are the annular region between two 
circles.
™ It can be shown that a necessary and sufficient condition for the 
stability of a signal x(n) is that its ROC contains the unit circle. 
14 z-TransformsHa H. Kha
4. Inverse z-transform
ROC ),()( transformz zXnx ⎯⎯⎯ →⎯ −
)(ROC ),( transform-zinverse nxzX ⎯⎯⎯⎯⎯ →⎯
ROC),()( zXnx z⎯→←
™ In inverting a z-transform, it is convenient to break it into its partial 
fraction (PF) expression form, i.e., into a sum of individual pole 
terms whose inverse z transforms are known.
1™ Note that with we have 
⎧ > i l )( l||||ROCif)(n
1-az-1
)( =zX
⎩⎨ <−−−
=
signals) l(anticausa |a||z| ROC if )1(
s gna scausa az
)(
nua
nua
nx n
15 z-TransformsHa H. Kha
Partial fraction expression method
™ In general, the z-transform is of the form
N
N zbzbbzNzX
−− +++== "
1
10)()(
™ The poles are defined as the solutions of D(z)=0. There will be M 
poles say at p p p Then we can write
M
M zazazD
−− ++ "101)(
, 1, 2,, M . , 
)1()1)(1()( 112
1
1
−−− −−−= zpzpzpzD M"
™ If N < M and all M poles are single poles.
where
16 z-TransformsHa H. Kha
Exampleod
™ Compute all possible inverse z-transform of 
Solution:
- Find the poles: 1-0.25z-2 =0 Æ p1=0.5, p2=-0.5
- We have N=1 and M=2, i.e., N < M. Thus, we can write 
where
17 z-TransformsHa H. Kha
Exampleod
18 z-TransformsHa H. Kha
Partial fraction expression method
™ If N=M
Wh d f i 1 Mere an or = ,,
™ If N> M
19 z-TransformsHa H. Kha
Exampleod
™ Compute all possible inverse z-transform of 
Solution:
- Find the poles: 1-0.25z-2 =0 Æ p1=0.5, p2=-0.5
- We have N=2 and M=2, i.e., N = M. Thus, we can write 
where
20 z-TransformsHa H. Kha
Exampleod
21 z-TransformsHa H. Kha
Exampleod
™ Determine the causal inverse z-transform of
Solution:
h 5 d 2 i Th h di id h- We ave N= an M= , .e., N > M. us, we ave to v e t e 
denominator into the numerator, giving
22 z-TransformsHa H. Kha
Partial fraction expression method
™ Complex-valued poles: since D(z) have real-valued coefficients, the 
complex-valued poles of X(z) must come in complex-conjugate pairs 
C id i h l hons er ng t e causa case, we ave 
Writing A1 and p1 in their polar form, say, 
with B1 and R1 > 0, and thus, we have 
A lt th i l i ti d i is a resu , e s gna n me- oma n s 
23 z-TransformsHa H. Kha
Exampleod
™ Determine the causal inverse z-transform of
Solution:
24 z-TransformsHa H. Kha
Exampleod
25 z-TransformsHa H. Kha
Homework
™ Problems: 5.2, 5.3, 5.4, 5.6, 5.6, 5.8, 5.16
26 z-TransformsHa H. Kha

File đính kèm:

  • pdfbai_giang_xu_ly_tin_hieu_so_chuong_5_z_transform_ha_hoang_kh.pdf