Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha

Example

™ Let x( ) { , , , } n)={1, 3, 2, 5}. Find the output and plot the g p raph for the

systems with input/out rules as follows:

a) y( ) n)=2x( ) n)

b) y(n)=x(n-4)

c) y(n)=x(n)+x(n-1)

Ha H. Kha 7 Discrete-Time SystemsExample

™ A weighted average system y( ) n)=2x( ) n)+4x(n-1)+5x(n-2). Given the

input signal x(n)=[x0,x1, x2, x4 ]

a) Find the output y( ) y n) by sample-samp p le processing method?

b) Find the output y(n) by block processing method.

c) Plot the block diagram to implement this system from basic

building blocks

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 1

Trang 1

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 2

Trang 2

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 3

Trang 3

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 4

Trang 4

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 5

Trang 5

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 6

Trang 6

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 7

Trang 7

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 8

Trang 8

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 9

Trang 9

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 22 trang duykhanh 17320
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha

Bài giảng Xử lý tín hiệu số - Chương 3: Discrete. Time systems - Hà Hoàng Kha
Chapter 3
Discrete-Time Systems
Click to edit Master subtitle styleHa Hoang Kha, Ph.D.
Ho Chi Minh City University of Technology
Email: hhkha@hcmut.edu.vn
Content
™ I t/ t t l ti hi f th tnpu ou pu re a ons p o e sys ems
™ Linear time-invariant (LTI) systems 
™ FIR d IIR fil
‰ convolution
 an ters
™ C li d bili f hausa ty an sta ty o t e systems
Ha H. Kha 2 Discrete-Time Systems
1. Discrete-time signal
™ The discrete-time signal x(n) is obtained from sampling an analog 
signal (t) i e (n)= (nT) here T is the sampling period x , . ., x x w .
™ There are some representations of the discrete-time signal x(n):
™ Graphical representation:
⎧
x(n)
4
™ Function: 1 1,3
( ) 4 2
0
for n
x n for n
l h
=⎪= =⎨⎪⎩ 1 2 31 0 4
11
™ T bl
e sew ere
n  ‐2 ‐1 0 1 2 3 4 5 
n‐
a e: 
™ Sequence: x(n)=[ 0, 0, 1, 4, 1, 0, ]=[0, 1, 4, 1] 
x(n)  0 0 0 1 4 1 0 0 
3 Discrete-Time SystemsHa H. Kha
Some elementary of discrete-time signals
™ Unit sample sequence (unit impulse): 
1 0
( )
0 0
for n
n
for n
δ =⎧= ⎨ ≠⎩
™ Unit step signal
1 0
( )
for n ≥⎧⎨0 0u n for n= <⎩
4 Discrete-Time SystemsHa H. Kha
2. Input/output rules
™ A discrete-time system is a processor that transform an input 
seq ence (n) into an o tp t seq ence (n)u x u u u y .
™ Sample by sample processing:
Fig: Discrete-time system
- - 
that is, and so on. 
™ Block processing:
5 Discrete-Time SystemsHa H. Kha
Basic building blocks of DSP systems
™ Constant multiplier )(nx )()( naxny =
)( )()( D™ D l
)(nx
nx nxny −=e ay
™ Adder )(1 nx
2
)()()( nxnxny += 21
)(2 nx
™ Signal multiplier )(1 nx )()()( 21 nxnxny =
6 Discrete-Time SystemsHa H. Kha
Example
™ Let x(n)={1, 3, 2, 5}. Find the output and plot the graph for the 
systems with input/out rules as follows: 
a) y(n)=2x(n)
b) y(n)=x(n-4)
c) y(n)=x(n)+x(n 1) -
7 Discrete-Time SystemsHa H. Kha
Example
™ A weighted average system y(n)=2x(n)+4x(n-1)+5x(n-2). Given the 
input signal x(n)=[x0,x1, x2, x4 ]
a) Find the output y(n) by sample-sample processing method?
b) Find the output y(n) by block processing method.
c) Plot the block diagram to implement this system from basic 
building blocks ?
8 Discrete-Time SystemsHa H. Kha
3. Linearity and time invariance
™ A linear system has the property that the output signal due to a 
linear combination of t o inp t signals can be obtained b forming w u y 
the same linear combination of the individual outputs.
Fig: Testing linearity 
™ If y(n)=a1y1(n)+a2y2(n) ∀ a1, a2Æ linear system. Otherwise, the 
system is nonlinear.
9 Discrete-Time SystemsHa H. Kha
Example
™ Test the linearity of the following discrete-time systems:
a) y(n)=nx(n)
b) y(n)=x(n2)
c) y(n)=x2(n)
d) y(n)=Ax(n)+B
10 Discrete-Time SystemsHa H. Kha
3. Linearity and time invariance
™ A time-invariant system is a system that its input-output 
characteristics do not change ith time w . 
Fig: Testing time invariance
™ If yD(n)=y(n-D) ∀ DÆ time-invariant system. Otherwise, the 
system is time-variant.
11 Discrete-Time SystemsHa H. Kha
Example
™ Test the time-invariance of the following discrete-time systems:
a) y(n)=x(n)-x(n-1)
b) y(n)=nx(n)
c) y(n)=x(-n)
d) y(n)=x(2n)
12 Discrete-Time SystemsHa H. Kha
4. Impulse response
™ Linear time-invariant (LTI) systems are characterized uniquely by 
their impulse response sequence h(n), which is defined as the 
response of the systems to a unit impulse δ(n).
Fig: Impulse response of an LTI system 
i D l d i l f T
13 Discrete-Time Systems
F g: e aye mpu se responses o an L I system
Ha H. Kha
5. Convolution of LTI systems
Fig: Response to linear combination of inputs 
™ Convolution:
(LTI form))()()()()( nhnxmnhmxny
m
∗=−=∑
)()()()()( nxnhmnxmhny
m
∗=−=∑ (direct form)
14 Discrete-Time SystemsHa H. Kha
5. FIR and IIR filters
™ A finite impulse response (FIR) filter has impulse response h(n) 
that extend only over a finite time interval say 0 ≤n ≤ M , .
Fi FIR i lg: mpu se response
™M: filter order; Lh=M+1: the length of impulse response 
™ h={h0, h1, , hM} is referred by various name such as filter 
coefficients, filter weights, or filter taps.
∑ −=∗= M mnxmhnxnhny )()()()()(™ FIR filtering equation:
15 Discrete-Time Systems
=m 0
Ha H. Kha
Example
™ The third-order FIR filter has the impulse response h=[1, 2, 1, -1] 
a) Find the I/O equation, i.e., the relationship of the input x(n) and the 
output y(n) ?
b) Given x=[1, 2, 3, 1], find the output y(n) ? 
16 Discrete-Time SystemsHa H. Kha
5. FIR and IIR filters
™ A infinite impulse response (IIR) filter has impulse response h(n) 
of infinite duration say 0 ≤n ≤ ∞ , .
Fi IIR i lg: mpu se response
∑∞ −=∗= )()()()()( mnxmhnxnhny™ IIR filtering equation:
=0m
™ The I/O equation of IIR filters are expressed as the recursive 
difference equation.
17 Discrete-Time SystemsHa H. Kha
Example
™ Determine the output of the LTI system which has the impulse 
r p n h(n)= n (n) | |≤ 1 h n th inp t i th nit t p i n les o se a u , a w e e u s e u s e s g a 
x(n)=u(n) ?
nmn +1™ Remark:
r
rrr
mk
k
−
−=
=
∑ 1
™When n= ∞ and|r|≤ 1 
r
rr
m
k
k
−=∑
∞
1
18 Discrete-Time Systems
m=
Ha H. Kha
Example
™ Assume the IIR filter has a casual h(n) defined by
⎨⎧ == 02)( 1
nfor
nh
) Fi d h I/O diff i ?
⎩ ≥− 1)5.0(4 nforn
a n t e erence equat on 
b) Find the difference equation for h(n)? 
19 Discrete-Time SystemsHa H. Kha
6. Causality and Stability
Fig: Causal, anticausal, and mixed signals
™ LTI systems can also classified in terms of causality depending on 
whether h(n) is casual, anticausal or mixed. 
™ A system is stable (BIBO) if bounded inputs (|x(n)| ≤A) always 
generate bounded outputs (|y(n)| ≤B).
™ A LTI system is stable ∞<⇔ ∑∞ nh |)(|
20 Discrete-Time Systems
−∞=n
Ha H. Kha
Example
™ Consider the causality and stability of the following systems:
a) h(n)=(0.5)nu(n)
b) h(n)=-(0.5)nu(-n-1)
21 Discrete-Time SystemsHa H. Kha
Homework
™ Problems: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6
22 Discrete-Time SystemsHa H. Kha

File đính kèm:

  • pdfbai_giang_xu_ly_tin_hieu_so_chuong_3_discrete_time_systems_h.pdf