Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha

Quantization process –Example

™ In a digital audio application, the signal is sampled at a rate of 44

KHz and each sample quantized using an A/D converter having a

full-scale range of 10 volts. Determine the number of bits B if the

rms quantinzation error mush be kept below 50 microvolts. Then,

determine the actual rms error and the bit rate in bits per second

D/A Converters-Example

™ A 4-bit D/A converter has a full-scale R=10 volts. Find the quantized

analog values for th f ll e following cases ?

a) Natural binary with the input bits b=[1001] ?

b) Offset binary with the input bits b=[1011] ?

c) Two’s complement binary wi h h i th the input bi b [1101] ? ts b=[1101

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 1

Trang 1

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 2

Trang 2

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 3

Trang 3

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 4

Trang 4

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 5

Trang 5

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 6

Trang 6

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 7

Trang 7

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 8

Trang 8

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 9

Trang 9

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha trang 10

Trang 10

Tải về để xem bản đầy đủ

pdf 17 trang duykhanh 5280
Bạn đang xem 10 trang mẫu của tài liệu "Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha

Bài giảng Xử lý tín hiệu số - Chương 2: Quantization - Hà Hoàng Kha
Chapter 2
Quantization
Click to edit Master subtitle styleHa Hoang Kha, Ph.D.
Ho Chi Minh City University of Technology
Email: hhkha@hcmut.edu.vn
1. Quantization process
Fig: Analog to digital conversion
™ The quantized sample xQ(nT) is represented by B bit, which can take 
2B possible values . 
™ An A/D is characterized by a full-scale range R which is divided 
B l l T l l finto 2 quantization eve s. ypica va ues o R in practice are 
between 1-10 volts.
Ha H. Kha 2 Quantization
1. Quantization process
Fig: Signal quantization
™ Quantizer resolution or quantization width 
2B
RQ =
™ A bip l ADC ( )R Rx nT≤ < o ar 2 2Q−
™ A unipolar ADC 0 ( )Qx nT R≤ <
3 QuantizationHa H. Kha
1. Quantization process –Quantization error 
™ Quantization by rounding: replace each value x(nT) by the nearest
q antization le elu v . 
™ Quantization by truncation: replace each value x(nT) by its below 
( ) ( ) ( )Qe nT x nT x nT= −
quantization level. 
™ Quantization error: 
™ Consider rounding quantization: 
2 2
Q Qe− ≤ ≤
i if b bili d i f i i
4 Quantization
F g: Un orm pro a ty ens ty o quant zat on error
Ha H. Kha
1. Quantization process –Quantization error 
™ The mean value of quantization error
/2 /2 1( ) 0
Q Q
e ep e de e de
Q
= = =∫ ∫
™ The mean-square error (power)
/2 /2Q Q− −
/2 /2 2
2 2 2 2 1( )
Q Q Qe e p e de e deσ = = = =∫ ∫ 
/2 /2 12Q Q Q− −
™ Root mean square (rms) error: 2 Qe eσ= = =- - 
12rms
™ R and Q are the ranges of the signal and quantization noise, then the 
signal to noise ratio (SNR) or dynamic range of the quantizer is 
defined as 
⎛ ⎞
10 10 1020 log 20log (2 ) log (2) 6
B
dB
RSNR B B dB
Q
= = = =⎜ ⎟⎝ ⎠
which is referred to as 6 dB bit rule
5 Quantization
 .
Ha H. Kha
1. Quantization process –Example
™ In a digital audio application, the signal is sampled at a rate of 44 
d h l d A/ hKHz an eac samp e quantize using an D converter aving a 
full-scale range of 10 volts. Determine the number of bits B if the 
rms quantinzation error mush be kept below 50 microvolts Then . , 
determine the actual rms error and the bit rate in bits per second. 
6 QuantizationHa H. Kha
2. Digital to Analog Converters (DACs)
™We begin with A/D converters, because they are used as the building 
blocks of s ccessi e appro imation ADCs u v x . 
Fig: B-bit D/A converter
™ Vector B input bits : b=[b1, b2,,bB]. Note that bB is the least 
f b h l b h f bsigni icant it (LSB) w i e 1 is t e most signi icant it (MSB). 
™ For unipolar signal, xQ є [0, R); for bipolar xQ є [-R/2, R/2). 
7 QuantizationHa H. Kha
2. DAC-Example DAC Circuit
Rf
∑ iI™ Full scale R=VREF, B=4 bit
16Rf8Rf4Rf2Rf
xQ=Vout
MSB
LSB
b1
bB
Fig: DAC using binary weighted resistor
-VREF 
31 2 4
2 4 8 16REF f f f f
bb b bI V
R R R R
⎛ ⎞= + + +⎜ ⎟⎜ ⎟⎝ ⎠∑
bb b b⎛ ⎞31 2 4
2 4 8 16Q OUT f REF
x V I R V= = ⋅ = + + +⎜ ⎟⎝ ⎠∑( ) ( )4 3 2 1 0 3 2 1 01 2 3 4 1 2 3 42 2 2 2 2 2 2 2 2Qx R b b b b Q b b b b− − − − − − −= + + + = + + +
8 QuantizationHa H. Kha
2. D/A Converters
™ Unipolar natural binary 1 21 2( 2 2 ... 2 )BQ Bx R b b b Qm− − −= + + + =
where m is the integer whose binary representation is b=[b1, b2,,bB]. 
1 2 02 2 2B Bm b b b− −= + + +1 2 ... B
™ Bipolar offset binary: obtained by shifting the xQ of unipolar natural 
binary converter by half-scale R/2: 
1 2
1 2( 2 2 ... 2 )
B
Q B
R Rx R b b b Qm− − −= + + + − = −
2 2
™ Two’s complement code: obtained from the offset binary code by 
l h f b l b bcomp ementing t e most signi icant it, i.e., rep acing 1 y .
1 2
1 2( 2 2 ... 2 ) 2
B
Q B
Rx R b b b− − −= + + + −
1 11b b= −
9 QuantizationHa H. Kha
2. D/A Converters-Example
™ A 4-bit D/A converter has a full-scale R=10 volts. Find the quantized 
l l f h f llana og va ues or t e o owing cases ?
a) Natural binary with the input bits b=[1001] ? 
b) Offset binary with the input bits b=[1011] ? 
) T ’ l bi i h h i bi b [1101] ?c wo s comp ement nary w t t e nput ts = 
10 QuantizationHa H. Kha
3. A/D converter
™ A/D converters quantize an analog value x so that is is represented 
b B bits b=[b b b ]y 1, 2,, B .
Fig: B-bit A/D converter
11 QuantizationHa H. Kha
3. A/D converter
™One of the most popular converters is the successive approximation 
A/D con erter v
Fig: Successive approximation A/D converter
™ After B tests, the successive approximation register (SAR) will hold 
the correct bit vector b.
12 QuantizationHa H. Kha
3. A/D converter
™ Successive approximation algorithm
where the unit-step function is defined by 1 0( )
0 0
if x
u x
if x
≥⎧= ⎨ <⎩
This algorithm is applied for the natural and offset binary with 
truncation quantization.
13 QuantizationHa H. Kha
3. A/D converter-Example
™ Consider a 4-bit ADC with the full-scale R=10 volts. Using the 
s ccessi e appro imation algorithm to find offset binar ofu v x y 
truncation quantization for the analog values x=3.5 volts and x=-1.5 
volts. 
14 QuantizationHa H. Kha
3. A/D converter
™ For rounding quantization, we 
shift b Q/2
™ For the two’s complement 
code the sign bit b is treated x y : , 1 
separately. 
15 QuantizationHa H. Kha
3. A/D converter-Example
™ Consider a 4-bit ADC with the full-scale R=10 volts. Using the 
s ccessi e appro imation algorithm to find offset and t o’su v x w 
complement of rounding quantization for the analog values x=3.5 
volts . 
16 QuantizationHa H. Kha
Homework
™ Problems 2.1, 2.2, 2.3, 2.5, 2.6
17 QuantizationHa H. Kha

File đính kèm:

  • pdfbai_giang_xu_ly_tin_hieu_so_chuong_2_quantization_ha_hoang_k.pdf