Bài giảng Kỹ thuật số - Chương 1: Các hệ thống số và mã
NGUYÊN LÝ CỦA VIỆC VIẾT SỐ
- Một số được viết bằng cách đặt kề nhau các ký hiệu trong
một tập hợp xác định.
Thí dụ: S10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- Giá trị của các số mã tùy thuộc vào vị trí của nó trong số.
Giá trị này được gọi là trọng số của số mã.
Thí dụ: 199810 = 1x103 + 9x102 + 9x101 + 8x100
= 1000 + 900 + 90 + 8
Ta thấy trong hệ 10, với 2 ký hiệu giống nhau, ký hiệu đứng
trước có trọng số gấp 10 lần ký hiệu đứng ngay sau nó.
Tổng quát: Một hệ thống số b sẽ gồm b ký hiệu trong tập hợp:
Sb = {S0, S1, S2, . . ., Sb-1}
Một số N được viết:
N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)b với ai Sb
Có giá trị:
N = a
nbn + an-1bn-1 + an-2bn-2 + . . . + aibi + . . . +
+ a
0b0 + a-1b-1 + a-2b-2 + . . . + a-mb-ma
ibi là trọng số của một ký hiệu trong Sb ở vị trí thứ i.
Trang 1
Trang 2
Trang 3
Trang 4
Trang 5
Trang 6
Trang 7
Trang 8
Trang 9
Trang 10
Tải về để xem bản đầy đủ
Tóm tắt nội dung tài liệu: Bài giảng Kỹ thuật số - Chương 1: Các hệ thống số và mã
Chương 1: Các hệ thống số & Mã 1 CÁC HỆ THỐNG SỐ & MÃ NGUYÊN LÝ CỦA VIỆC VIẾT SỐ CÁC HỆ THỐNG SỐ BIẾN ĐỔI QUA LẠI GIỮA CÁC HỆ THỐNG SỐ CÁC PHÉP TOÁN SỐ NHỊ PHÂN MÃ HÓA CHƢƠNG 1 Chương 1: Các hệ thống số & Mã 2 NGUYÊN LÝ CỦA VIỆC VIẾT SỐ - Một số được viết bằng cách đặt kề nhau các ký hiệu trong một tập hợp xác định. Thí dụ: S10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} - Giá trị của các số mã tùy thuộc vào vị trí của nó trong số. Giá trị này được gọi là trọng số của số mã. Thí dụ: 199810 = 1x10 3 + 9x102 + 9x101 + 8x100 = 1000 + 900 + 90 + 8 Ta thấy trong hệ 10, với 2 ký hiệu giống nhau, ký hiệu đứng trước có trọng số gấp 10 lần ký hiệu đứng ngay sau nó. Chương 1: Các hệ thống số & Mã 3 Tổng quát: Một hệ thống số b sẽ gồm b ký hiệu trong tập hợp: Sb = {S0, S1, S2, . . ., Sb-1} Một số N được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)b với ai Sb Có giá trị: N = anb n + an-1b n-1 + an-2b n-2 + . . . + aib i + . . . + + a0b 0 + a-1b -1 + a-2b -2 + . . . + a-mb -m aib i là trọng số của một ký hiệu trong Sb ở vị trí thứ i. n mi i ibaN Chương 1: Các hệ thống số & Mã 4 Hệ cơ số 10 (Thập phân – Decimal system) Tập hợp hệ 10: S10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Số N được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)10 với ai S10 Có giá trị: N = an10 n + an-110 n-1 + an-210 n-2 + . . . + ai10 i + . . . + + a010 0 + a-110 -1 + a-210 -2 + . . . + a-m10 -m CÁC HỆ THỐNG SỐ Chương 1: Các hệ thống số & Mã 5 Hệ cơ số 2 (Nhị phân – Binary system) Tập hợp hệ 2: S2 = {0, 1} Mỗi số mã trong một số nhị phân gọi là một bit (viết tắt của binary digit) Số N được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)2 với ai S2 Có giá trị: N = an2 n + an-12 n-1 + an-22 n-2 + . . . + ai2 i + . . . + + a02 0 + a-12 -1 + a-22 -2 + . . . + a-m2 -m Chương 1: Các hệ thống số & Mã 6 Hệ cơ số 8 (Bát phân – Octal system) Tập hợp hệ 8: S8 = {0, 1, 2, 3, 4, 5, 6, 7} Số N được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)8 với ai S8 Có giá trị: N = an8 n + an-18 n-1 + an-28 n-2 + . . . + ai8 i + . . . + + a08 0 + a-18 -1 + a-28 -2 + . . . + a-m8 -m Chương 1: Các hệ thống số & Mã 7 Hệ cơ số 16 (Thập lục phân – Hexadecimal system) Tập hợp hệ 16: S2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} (trong đó A = 1010, B = 1110, . . ., F = 1510) Số N được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)16 với ai S16 Có giá trị: N = an16 n + an-116 n-1 + an-216 n-2 + . . . + ai16 i + . . . + + a016 0 + a-116 -1 + a-216 -2 + . . . + a-m16 -m Người ta thường dùng chữ H (h) để chỉ số thập lục phân. Chương 1: Các hệ thống số & Mã 8 Đổi một số từ hệ b sang hệ 10 Một số N trong hệ b được viết: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)b với ai Sb Có giá trị tương đương trong hệ 10: N = anb n + an-1b n-1 + an-2b n-2 + . . . + aib i + . . . + + a0b 0 + a-1b -1 + a-2b -2 + . . . + a-mb -m BIẾN ĐỔI QUA LẠI GIỮA CÁC HỆ THỐNG SỐ Xác định giá trị tương đương của một số ở hệ này so với hệ thống khác Lấy từng trị số của con số nhân với giá trị vị trí tương ứng, sau đó lấy tổng tất cả. Chương 1: Các hệ thống số & Mã 9 VÍ DỤ Đổi sang hệ cơ số 10 (hệ thập phân) • 1010,112 = 1x2 3+0x22+1x21+0x20+1x2-1+1x2-2=10,7510 • 1C516 = 1x16 2+12x161+5x160=256+192+5=45310 • 2F16 =2x16 1+15x160=32+15 = 4710 Chương 1: Các hệ thống số & Mã 10 Đổi một số từ hệ 10 sang hệ b Một số N hệ 10, viết sang hệ b có dạng: N = (anan-1an-2. . .ai. . .a0,a-1a-2. . .a-m)b = (anan-1. . .a0)b + (0,a-1a-2. . .a-m)b Trong đó: (anan-1. . .a0)b = là phần nguyên của N (0,a-1a-2. . .a-m)b = là phần lẻ của N được biến đổi theo 2 cách khác nhau. Chương 1: Các hệ thống số & Mã 11 Phần nguyên: Dùng phép chia lập cho cơ số b: -Lấy phần nguyên chia cho cơ số b ta được thương số, số dư của lần chia thứ nhất chính là số mã có trọng số nhỏ nhất của phần nguyên (a0). -Tiếp tục lấy thương số chia cho cơ số b cho đến khi thương số=0 thì dừng phép chia, số dư của phép chia cuối cùng, đó là số mã có trọng số lớn nhất của phần nguyên (an) Ta tìm được dãy số (anan-1. . .a0) Chương 1: Các hệ thống số & Mã 12 Phần lẻ: Dùng phép nhân lập cho cơ số b -Lấy phần lẻ nhân cho cơ số b ta được tích số, phần nguyên của phép nhân thứ nhất là số mã có trọng số lớn nhất của phần lẻ (a-1). -Tiếp tục lấy phần lẻ trong phép nhân đem nhân với cơ số b cho đến khi kết quả có phần lẻ bằng không thì dừng phép nhân. Ta tìm được dãy số (a-1a-2. . .a-m) Chú ý: Có thể ta không tìm được một số trong hệ b có giá trị đúng bằng phần lẻ của số thập phân (do kết quả phép nhân luôn khác 0), do đó tùy theo yêu cầu về độ chính xác mà ta lấy một số số hạng nhất định . Chương 1: Các hệ thống số & Mã 13 Ví dụ Từ thập phân sang nhị phân 8 , 625 8 : 2 = 4 dư 0 (LSB) 4 : 2 = 2 dư 0 2 : 2 = 1 dư 0 1 : 2 = 0 dư 1 0.625 x 2 = 1,25 phần nguyên 1 (MSB) 0.25 x 2 = 0,5 phần nguyên 0 0.5 x 2 = 1,0 phần nguyên 1 1 0 0 0 , 1 0 1 2 Chương 1: Các hệ thống số & Mã 14 Ví dụ Từ thập phân sang nhị phân 12 , 625 12 : 2 = 6 dư 0 (LSB) 6 : 2 = 3 dư 0 3 : 2 = 1 dư 1 1 : 2 = 0 dư 1 0.625 x 2 = 1,25 phần nguyên 1 (MSB) 0.25 x 2 = 0,5 phần nguyên 0 0.5 x 2 = 1,0 phần nguyên 1 1 1 0 0 , 1 0 1 2 Chương 1: Các hệ thống số & Mã 15 Từ thập phân sang thập lục phân: 1 4 8 0 , 4 2 9 6 8 7 5 1480 : 16 = 92 dö 8 (LSD) 92 : 16 = 5 dö 12 5 : 16 = 0 dö 5 0.4296875 x 16 = 6,875 phaàn nguyeân 6 (MSD) 0.875 x 16 = 14,0 phaàn nguyeân 14 5 C 8 , 6 E H Chương 1: Các hệ thống số & Mã 16 Đổi số từ hệ thập lục phân (Hex) sang nhị phân và ngƣợc lại Nhận xét: Mỗi con số trong số Hex tương ưng với số 4 bit của số nhị phân Thay mỗi số hạng của số trong hệ thập lục phân bằng một số 4 bit trong số nhị phân. Ngƣợc lại: Từ dấu phẩy nhị phân về hai phía, nhóm 4 bit lại, giá trị của mỗi số 4 bit này là một số hạng trong hệ thập lục phân. (nếu cần: phải thêm số 0 vào nhóm đầu và cuối mà không làm thay đổi giá trị của số đã cho). Chương 1: Các hệ thống số & Mã 17 Ví dụ: Từ thập lục phân sang nhị phân: Vi dụ: Từ nhị phân sang thập lục phân: 1 1 1 0 1 1 0 1 0 1 1 1 0 1 , 0 1 1 0 1 0 1 0 0 0 6 A H 2 C 9 , E 8 0 0 1 0 1 1 0 0 1 0 0 1 , 1 1 1 0 1 0 0 0 (B) 3 B 5 D , Chương 1: Các hệ thống số & Mã 18 Đổi số từ hệ bát phân sang nhị phân và ngƣợc lại Nhận xét: Mỗi con số trong số bát phân tương ưng với số 3 bit của số nhị phân Thay mỗi số hạng của số trong hệ bát phân bằng một số 3 bit trong số nhị phân. Ngƣợc lại: Từ dấu phẩy nhị phân về hai phía, nhóm 3 bit lại, giá trị của mỗi số 3 bit này là một số hạng trong hệ bat phân. (nếu cần: phải thêm số 0 vào nhóm đầu và cuối mà không làm thay đổi giá trị của số đã cho). Chương 1: Các hệ thống số & Mã 19 Ví dụ: Từ bát phân sanh nhị phân Ví dụ: Từ nhị phân sang bát phân 1 1 1 0 1 1 0 1 0 1 1 1 0 1 , 0 1 1 0 1 0 1 0 0 0 2 5 7 , 3 6 (0 1 0 1 0 1 1 1 1 , 0 1 1 1 1 0)2 (3 5 5 3 5 , 3 2 4 )8 Chương 1: Các hệ thống số & Mã 20 Đổi số từ hệ bát phân sang hệ thập lục phân và ngƣợc lại Dùng số nhị phân làm trung gian VD: (1234,67)8 = 0 001 0010 0011 0100 , 011 111 00 = (1234,7C)16 VD: (ABCD,EF) = 00 1010 1011 1100 1101 , 1110 1111 0 = (125715,736)8 Chương 1: Các hệ thống số & Mã 21 Bảng kết quả chuyển đổi Thập phân Nhị phân Bát phân Thập lục phân Thập phân Nhị phân Bát phân Thập lục phân 0 1 2 3 4 5 6 7 0000 0001 0010 0011 0100 0101 0110 0111 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1000 1001 1010 1011 1100 1101 1110 1111 10 11 12 13 14 15 16 17 8 9 A B C D E F Chương 1: Các hệ thống số & Mã 22 CÁC PHÉP TÍNH TRONG HỆ NHỊ PHÂN Phép cộng Phép trừ Phép nhân Phép chia 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 (nhớ 1) 0 – 0 = 0 1 – 1 = 0 1 – 0 = 1 0 – 1 = 1 (nhớ 1) 0 x 0 = 0 0 x 1 = 0 1 x 0 = 0 1 x 1 = 1 Thực hiện giống phép chia số thập phân Chương 1: Các hệ thống số & Mã 23 MÃ HÓA - Mã hóa là phép áp một đối tượng từ tập hợp nguồn tập hợp đích. - Tập hợp nguồn có thể là tập số, tập ký tự, ... - Tập hợp đích thường là tập chứa các tổ hợp các số nhị phân. - Tổ hợp các số nhị phân tương ứng với một số gọi là từ mã. Tập hợp các từ mã cho ta một bộ mã (mã ASCII, mã Baudot, mã dò lỗi, mã sửa lỗi, mật mã...) - Ngược lại với mã hóa là giải mã. - Biểu diễn các số trong các hệ khác nhau cũng là một hình thức mã hóa, việc chuyển từ mã này sang mã khác là bài toán mã hoá. Chương 1: Các hệ thống số & Mã 24 -Mã BCD (Binary Code Decimal) dùng số nhị phân 4 bit tương ứng thay thế cho từng số hạng trong số thập phân (Có nghĩa: Mỗi số hạng trong số thập phân sẽ được miêu ta bằng số nhị phân 4 bit – có 6 tổ hợp không sử dụng). VD: 943 có mã BCD là 1001 0100 0011 487 có mã BCD là 0100 1000 0111 Mã BCD sử dụng nhiều bit hơn số nhị phân nhưng quá trình biến đổi đơn giản hơn Chương 1: Các hệ thống số & Mã 25 -Mã Gray còn gọi là mã khoảng cách đơn vị hay mã phản chiếu. + Hai tổ hợp mã kế cận chỉ khác nhau một bit. Tính kề nhau của các tổ hợp mã Gray được dùng để rút gọn các hàm logic đến mức tối giản. + Mã Gray còn gọi là mã phản chiếu: Do tính đối xứng của các số hạng trong tập hợp mã giống như phẩn chiếu qua gương. Dựa vào tính chất này để thiết kế mã Gray. Chương 1: Các hệ thống số & Mã 26 • Thiết lập mã Gray: Từ tập hợp 2n từ mã của số n bit tập hợp 2n+1 từ mã của số n+1 bit: + Viết 2n từ mã theo thứ tự từ nhỏ đến lớn. + Thêm số 0 vào trước tất cả từ mã đã có. + Phần thứ hai của tập hợp gồm các từ mã giống như phần thứ nhất theo thứ tự ngược lại (phản chiếu), phía trước thêm số 1. • Đổi từ Nhị phân sang Gray: Hạ bit MSB xuống, dịch chuyển MSB lùi về bit có trọng số nhỏ hơn (phía phải), sau đó thực hiện phép cộng không nhớ được Mã Gray. • Đổi từ Gray sang Nhị phân: Hạ bit MSB xuống, Lấy kết quả vừa hạ xuống dịch lùi về phía bit có trọng số nhỏ hơn (phía phải), sau đó thực hiện phép cộng không nhớ được số nhị phân.
File đính kèm:
- bai_giang_ky_thuat_so_chuong_1_cac_he_thong_so_va_ma.pdf